Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parallel Workflow for Polar Sea-Ice Classification using Auto-labeling of Sentinel-2 Imagery (2403.13135v1)

Published 19 Mar 2024 in cs.CV, cs.DC, and cs.LG

Abstract: The observation of the advancing and retreating pattern of polar sea ice cover stands as a vital indicator of global warming. This research aims to develop a robust, effective, and scalable system for classifying polar sea ice as thick/snow-covered, young/thin, or open water using Sentinel-2 (S2) images. Since the S2 satellite is actively capturing high-resolution imagery over the earth's surface, there are lots of images that need to be classified. One major obstacle is the absence of labeled S2 training data (images) to act as the ground truth. We demonstrate a scalable and accurate method for segmenting and automatically labeling S2 images using carefully determined color thresholds. We employ a parallel workflow using PySpark to scale and achieve 9-fold data loading and 16-fold map-reduce speedup on auto-labeling S2 images based on thin cloud and shadow-filtered color-based segmentation to generate label data. The auto-labeled data generated from this process are then employed to train a U-Net machine learning model, resulting in good classification accuracy. As training the U-Net classification model is computationally heavy and time-consuming, we distribute the U-Net model training to scale it over 8 GPUs using the Horovod framework over a DGX cluster with a 7.21x speedup without affecting the accuracy of the model. Using the Antarctic's Ross Sea region as an example, the U-Net model trained on auto-labeled data achieves a classification accuracy of 98.97% for auto-labeled training datasets when the thin clouds and shadows from the S2 images are filtered out.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. M. C. Serreze and R. G. Barry, “Processes and impacts of arctic amplification: A research synthesis,” Global and planetary change, vol. 77, no. 1-2, pp. 85–96, 2011.
  2. J. M. Iqrah, Y. Koo, W. Wang, H. Xie, and S. Prasad, “Toward polar sea-ice classification using color-based segmentation and auto-labeling of sentinel-2 imagery to train an efficient deep learning model,”
  3. E. Sentinel, “Sentinel-1 sar, esa.” Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar, 2010.
  4. J.-W. Park, A. A. Korosov, M. Babiker, J.-S. Won, M. W. Hansen, and H.-C. Kim, “Classification of sea ice types in sentinel-1 synthetic aperture radar images,” The Cryosphere, vol. 14, no. 8, pp. 2629–2645, 2020.
  5. J.-W. Park, J.-S. Won, A. A. Korosov, M. Babiker, and N. Miranda, “Textural noise correction for sentinel-1 topsar cross-polarization channel images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp. 4040–4049, 2019.
  6. J.-W. Park, A. A. Korosov, M. Babiker, S. Sandven, and J.-S. Won, “Efficient thermal noise removal for sentinel-1 topsar cross-polarization channel,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1555–1565, 2018.
  7. H. Boulze, A. Korosov, and J. Brajard, “Classification of sea ice types in sentinel-1 sar data using convolutional neural networks,” Remote Sensing, vol. 12, no. 13, p. 2165, 2020.
  8. W.-I. Joint et al., “Ice chart colour code standard, version 1.0, 2014.,” 2014.
  9. Y.-R. Wang and X.-M. Li, “Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning,” Earth System Science Data, vol. 13, no. 6, pp. 2723–2742, 2021.
  10. M. Campos-Taberner, F. J. García-Haro, B. Martínez, E. Izquierdo-Verdiguier, C. Atzberger, G. Camps-Valls, and M. A. Gilabert, “Understanding deep learning in land use classification based on sentinel-2 time series,” Scientific reports, vol. 10, no. 1, pp. 1–12, 2020.
  11. M. Muchow, A. U. Schmitt, and L. Kaleschke, “A lead-width distribution for antarctic sea ice: a case study for the weddell sea with high-resolution sentinel-2 images,” The Cryosphere, vol. 15, no. 9, pp. 4527–4537, 2021.
  12. Z. Wang, P. Sun, L. Wang, M. Zhang, and Z. Wang, “Monitoring sea ice in liaodong bay of bohai sea during the freezing period of 2017/2018 using sentinel-2 remote sensing data,” Journal of Spectroscopy, vol. 2021, 2021.
  13. I. Hernandez, P. Benevides, H. Costa, and M. Caetano, “Exploring sentinel-2 for land cover and crop mapping in portugal,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 43, pp. 83–89, 2020.
  14. D. Frantz, “Force—landsat+ sentinel-2 analysis ready data and beyond,” Remote Sensing, vol. 11, no. 9, p. 1124, 2019.
  15. R. Zhang, G. Cavallaro, and J. Jitsev, “Super-resolution of large volumes of sentinel-2 images with high performance distributed deep learning,” in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 617–620, IEEE, 2020.
  16. Wikipedia, “Data parallelism — Wikipedia, the free encyclopedia.” [Online; accessed 01-Feb-2024].
  17. V. Sarukkai, A. Jain, B. Uzkent, and S. Ermon, “Cloud removal from satellite images using spatiotemporal generator networks,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, (Piscataway, NJ), pp. 1796–1805, IEEE, 2020.
  18. A. Meraner, P. Ebel, X. X. Zhu, and M. Schmitt, “Cloud removal in sentinel-2 imagery using a deep residual neural network and sar-optical data fusion,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 333–346, 2020.
  19. J. Liu, X. Wang, M. Chen, S. Liu, X. Zhou, Z. Shao, and P. Liu, “Thin cloud removal from single satellite images,” Optics express, vol. 22, no. 1, pp. 618–632, 2014.
  20. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  21. X. Xu, S. Xu, L. Jin, and E. Song, “Characteristic analysis of otsu threshold and its applications,” Pattern recognition letters, vol. 32, no. 7, pp. 956–961, 2011.
  22. P. Guruprasad, “Overview of different thresholding methods in image processing,” in TEQIP Sponsored 3rd National Conference on ETACC, 2020.
  23. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
  24. K. Hara, D. Saito, and H. Shouno, “Analysis of function of rectified linear unit used in deep learning,” in 2015 international joint conference on neural networks (IJCNN), pp. 1–8, IEEE, 2015.
  25. J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, and L. M. Gambardella, “Max-pooling convolutional neural networks for vision-based hand gesture recognition,” in 2011 IEEE international conference on signal and image processing applications (ICSIPA), pp. 342–347, IEEE, 2011.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  27. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
  28. A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.
  29. P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for clusters of workstations,” Journal of Parallel and Distributed Computing, vol. 69, no. 2, pp. 117–124, 2009.
  30. K. M. Ting, “Confusion matrix.,” Encyclopedia of machine learning and data mining, vol. 260, 2017.
  31. K. Ma, Z. Duanmu, H. Yeganeh, and Z. Wang, “Multi-exposure image fusion by optimizing a structural similarity index,” IEEE Transactions on Computational Imaging, vol. 4, no. 1, pp. 60–72, 2017.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com