Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Multimodal In-Context Learning for Vision & Language Models (2403.12736v2)

Published 19 Mar 2024 in cs.CV

Abstract: State-of-the-art Vision-LLMs (VLMs) ground the vision and the language modality primarily via projecting the vision tokens from the encoder to language-like tokens, which are directly fed to the LLM decoder. While these models have shown unprecedented performance in many downstream zero-shot tasks (eg image captioning, question answers, etc), still little emphasis has been put on transferring one of the core LLM capability of In-Context Learning (ICL). ICL is the ability of a model to reason about a downstream task with a few examples demonstrations embedded in the prompt. In this work, through extensive evaluations, we find that the state-of-the-art VLMs somewhat lack the ability to follow ICL instructions. In particular, we discover that even models that underwent large-scale mixed modality pre-training and were implicitly guided to make use of interleaved image and text information (intended to consume helpful context from multiple images) under-perform when prompted with few-shot demonstrations (in an ICL way), likely due to their lack of direct ICL instruction tuning. To enhance the ICL abilities of the present VLM, we propose a simple yet surprisingly effective multi-turn curriculum-based learning methodology with effective data mixes, leading up to a significant 21.03% (and 11.3% on average) ICL performance boost over the strongest VLM baselines and a variety of ICL benchmarks. Furthermore, we also contribute new benchmarks for ICL evaluation in VLMs and discuss their advantages over the prior art.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com