Revisiting Local Computation of PageRank: Simple and Optimal (2403.12648v1)
Abstract: We revisit the classic local graph exploration algorithm ApproxContributions proposed by Andersen, Borgs, Chayes, Hopcroft, Mirrokni, and Teng (WAW '07, Internet Math. '08) for computing an $\epsilon$-approximation of the PageRank contribution vector for a target node $t$ on a graph with $n$ nodes and $m$ edges. We give a worst-case complexity bound of ApproxContributions as $O(n\pi(t)/\epsilon\cdot\min(\Delta_{in},\Delta_{out},\sqrt{m}))$, where $\pi(t)$ is the PageRank score of $t$, and $\Delta_{in}$ and $\Delta_{out}$ are the maximum in-degree and out-degree of the graph, resp. We also give a lower bound of $\Omega(\min(\Delta_{in}/\delta,\Delta_{out}/\delta,\sqrt{m}/\delta,m))$ for detecting the $\delta$-contributing set of $t$, showing that the simple ApproxContributions algorithm is already optimal. We also investigate the computational complexity of locally estimating a node's PageRank centrality. We improve the best-known upper bound of $\widetilde{O}(n{2/3}\cdot\min(\Delta_{out}{1/3},m{1/6}))$ given by Bressan, Peserico, and Pretto (SICOMP '23) to $O(n{1/2}\cdot\min(\Delta_{in}{1/2},\Delta_{out}{1/2},m{1/4}))$ by simply combining ApproxContributions with the Monte Carlo simulation method. We also improve their lower bound of $\Omega(\min(n{1/2}\Delta_{out}{1/2},n{1/3}m{1/3}))$ to $\Omega(n{1/2}\cdot\min(\Delta_{in}{1/2},\Delta_{out}{1/2},m{1/4}))$ if $\min(\Delta_{in},\Delta_{out})=\Omega(n{1/3})$, and to $\Omega(n{1/2-\gamma}(\min(\Delta_{in},\Delta_{out})){1/2+\gamma})$ if $\min(\Delta_{in},\Delta_{out})=o(n{1/3})$, where $\gamma>0$ is an arbitrarily small constant. Our matching upper and lower bounds resolve the open problem of whether one can tighten the bounds given by Bressan, Peserico, and Pretto (FOCS '18, SICOMP '23). Remarkably, the techniques and analyses for proving all our results are surprisingly simple.
- Local computation of pagerank contributions. In Proc. 5th Int. Workshop Algorithms Models Web Graph, volume 4863, pages 150β165, 2007. doi:10.1007/978-3-540-77004-6_12.
- Robust pagerank and locally computable spam detection features. In Proc. 4th Int. Workshop Adversarial Inf. Retrieval Web, pages 69β76, 2008. doi:10.1145/1451983.1452000.
- Local computation of pagerank contributions. Internet Math., 5(1):23β45, 2008. doi:10.1080/15427951.2008.10129302.
- Local graph partitioning using pagerank vectors. In Proc. 47th Annu. IEEE Symp. Found. Comput. Sci., pages 475β486, 2006. doi:10.1109/FOCS.2006.44.
- Using pagerank to locally partition a graph. Internet Math., 4(1):35β64, 2007. doi:10.1080/15427951.2007.10129139.
- Monte carlo methods in pagerank computation: when one iteration is sufficient. SIAM J. Numer. Anal., 45(2):890β904, 2007. doi:10.1137/050643799.
- A sublinear time algorithm for pagerank computations. In Proc. 9th Int. Workshop Algorithms Models Web Graph, volume 7323, pages 41β53, 2012. doi:10.1007/978-3-642-30541-2_4.
- Multiscale matrix sampling and sublinear-time pagerank computation. Internet Math., 10(1-2):20β48, 2014. doi:10.1080/15427951.2013.802752.
- Scaling graph neural networks with approximate pagerank. In Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 2464β2473, 2020. doi:10.1145/3394486.3403296.
- Fast bidirectional probability estimation in markov models. In Advances Neural Inf. Process. Syst. 28, pages 1423β1431, 2015. URL: https://proceedings.neurips.cc/paper/2015/hash/ede7e2b6d13a41ddf9f4bdef84fdc737-Abstract.html.
- Local approximation of pagerank and reverse pagerank. In Proc. 17th ACM Int. Conf. Inf. Knowl. Manage., pages 279β288, 2008. doi:10.1145/1458082.1458122.
- The anatomy of a large-scale hypertextual web search engine. Comput. Netw., 30(1-7):107β117, 1998. doi:10.1016/S0169-7552(98)00110-X.
- Local computation of pagerank: the ranking side. In Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., pages 631β640, 2011. doi:10.1145/2063576.2063670.
- The power of local information in pagerank. In Proc. 22nd Int. World Wide Web Conf., pages 179β180, 2013. doi:10.1145/2487788.2487878.
- Simple set cardinality estimation through random sampling. CoRR, abs/1512.07901, 2015. doi:10.48550/arXiv.1512.07901.
- Sublinear algorithms for local graph centrality estimation. In Proc. 59th Annu. IEEE Symp. Found. Comput. Sci., pages 709β718, 2018. doi:10.1109/FOCS.2018.00073.
- Sublinear algorithms for local graph-centrality estimation. SIAM J. Comput., 52(4):968β1008, 2023. doi:10.1137/19M1266976.
- Local methods for estimating pagerank values. In Proc. 13th ACM Int. Conf. Inf. Knowl. Manage., pages 381β389, 2004. doi:10.1145/1031171.1031248.
- Fan Chung. The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci., 104(50):19735β19740, 2007. doi:10.1073/pnas.0708838104.
- Testing graph clusterability: algorithms and lower bounds. In Proc. 59th Annu. IEEE Symp. Found. Comput. Sci., pages 497β508, 2018. doi:10.1109/FOCS.2018.00054.
- Testing cluster structure of graphs. In Proc. 47th Annu. ACM Symp. Theory Comput., pages 723β732, 2015. doi:10.1145/2746539.2746618.
- Scalable graph neural networks via bidirectional propagation. In Advances Neural Inf. Process. Syst. 33, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/a7789ef88d599b8df86bbee632b2994d-Abstract.html.
- An optimal algorithm for monte carlo estimation. SIAM J. Comput., 29(5):1484β1496, 2000. doi:10.1137/S0097539797315306.
- Towards scaling fully personalized pagerank: algorithms, lower bounds, and experiments. Internet Math., 2(3):333β358, 2005. doi:10.1080/15427951.2005.10129104.
- Variational perspective on local graph clustering. Math. Program., 174(1-2):553β573, 2019. doi:10.1007/S10107-017-1214-8.
- Property testing and its connection to learning and approximation. J. ACM, 45(4):653β750, 1998. doi:10.1145/285055.285060.
- Parallel personalized pagerank on dynamic graphs. Proc. VLDB Endowment, 11(1):93β106, 2017. doi:10.14778/3151113.3151121.
- Approximating personalized pagerank with minimal use of web graph data. Internet Math., 3(3):257β294, 2007. doi:10.1080/15427951.2006.10129128.
- Property testing in bounded degree graphs. Algorithmica, 32(2):302β343, 2002. doi:10.1007/S00453-001-0078-7.
- TaherΒ H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng., 15(4):784β796, 2003. doi:10.1109/TKDE.2003.1208999.
- Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169β188, 1986. doi:10.1016/0304-3975(86)90174-X.
- Predict then propagate: graph neural networks meet personalized pagerank. In Proc. 7th Int. Conf. Learn. Representations, 2019. URL: https://openreview.net/forum?id=H1gL-2A9Ym.
- Satyen Kale and C.Β Seshadhri. An expansion tester for bounded degree graphs. SIAM J. Comput., 40(3):709β720, 2011. doi:10.1137/100802980.
- Bidirectional pagerank estimation: from average-case to worst-case. In Proc. 12th Int. Workshop Algorithms Models Web Graph, volume 9479, pages 164β176, 2015. doi:10.1007/978-3-319-26784-5_13.
- Personalized pagerank estimation and search: A bidirectional approach. In Proc. 9th ACM Int. Conf. Web Search Data Mining, pages 163β172, 2016. doi:10.1145/2835776.2835823.
- FAST-PPR: scaling personalized pagerank estimation for large graphs. In Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1436β1445, 2014. doi:10.1145/2623330.2623745.
- Personalized pagerank to a target node. CoRR, abs/1304.4658, 2013. doi:10.48550/arXiv.1304.4658.
- Efficient personalized pagerank computation: A spanning forests sampling based approach. In Proc. 2022 ACM SIGMOD Int. Conf. Manage. Data, pages 2048β2061, 2022. doi:10.1145/3514221.3526140.
- Single-source personalized pageranks with workload robustness. IEEE Trans. Knowl. Data Eng., 35(6):6320β6334, 2023. doi:10.1109/TKDE.2022.3175814.
- Graph sparsification by effective resistances. SIAM J. Comput., 40(6):1913β1926, 2011. doi:10.1137/080734029.
- Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proc. 36th Annu. ACM Symp. Theory Comput., pages 81β90, 2004. doi:10.1145/1007352.1007372.
- Approximate graph propagation. In Proc. 27th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1686β1696, 2021. doi:10.1145/3447548.3467243.
- TopPPR: Top-k personalized pagerank queries with precision guarantees on large graphs. In Proc. 2018 ACM SIGMOD Int. Conf. Manage. Data, pages 441β456, 2018. doi:10.1145/3183713.3196920.
- PRSim: Sublinear time simrank computation on large power-law graphs. In Proc. 2019 ACM SIGMOD Int. Conf. Manage. Data, pages 1042β1059, 2019. doi:10.1145/3299869.3319873.
- Efficient algorithms for finding approximate heavy hitters in personalized pageranks. In Proc. 2018 ACM SIGMOD Int. Conf. Manage. Data, pages 1113β1127, 2018. doi:10.1145/3183713.3196919.
- HubPPR: Effective indexing for approximate personalized pagerank. Proc. VLDB Endowment, 10(3):205β216, 2016. doi:10.14778/3021924.3021936.
- Estimating single-node pagerank in O~β’(minβ‘{dt,m})~πsubscriptππ‘π\tilde{O}\left(\min\big{\{}d_{t},\sqrt{m}\big{\}}\right)over~ start_ARG italic_O end_ARG ( roman_min { italic_d start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , square-root start_ARG italic_m end_ARG } ) time. Proc. VLDB Endowment, 16(11):2949β2961, 2023. doi:10.14778/3611479.3611500.
- Personalized pagerank to a target node, revisited. In Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 657β667, 2020. doi:10.1145/3394486.3403108.
- Scalable graph embeddings via sparse transpose proximities. In Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1429β1437, 2019. doi:10.1145/3292500.3330860.
- Approximate personalized pagerank on dynamic graphs. In Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 1315β1324, 2016. doi:10.1145/2939672.2939804.
- Instant graph neural networks for dynamic graphs. In Proc. 28th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pages 2605β2615, 2022. doi:10.1145/3534678.3539352.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.