Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reinforcement learning based local path planning for mobile robot (2403.12463v1)

Published 24 Oct 2023 in cs.RO and cs.AI

Abstract: Different methods are used for a mobile robot to go to a specific target location. These methods work in different ways for online and offline scenarios. In the offline scenario, an environment map is created once, and fixed path planning is made on this map to reach the target. Path planning algorithms such as A* and RRT (Rapidly-Exploring Random Tree) are the examples of offline methods. The most obvious situation here is the need to re-plan the path for changing conditions of the loaded map. On the other hand, in the online scenario, the robot moves dynamically to a given target without using a map by using the perceived data coming from the sensors. Approaches such as SFM (Social Force Model) are used in online systems. However, these methods suffer from the requirement of a lot of dynamic sensing data. Thus, it can be said that the need for re-planning and mapping in offline systems and various system design requirements in online systems are the subjects that focus on autonomous mobile robot research. Recently, deep neural network powered Q-Learning methods are used as an emerging solution to the aforementioned problems in mobile robot navigation. In this study, machine learning algorithms with deep Q-Learning (DQN) and Deep DQN architectures, are evaluated for the solution of the problems presented above to realize path planning of an autonomous mobile robot to avoid obstacles.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com