Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

U-Net Kalman Filter (UNetKF): An Example of Machine Learning-assisted Ensemble Data Assimilation (2403.12366v1)

Published 19 Mar 2024 in cs.LG and physics.ao-ph

Abstract: Machine learning techniques have seen a tremendous rise in popularity in weather and climate sciences. Data assimilation (DA), which combines observations and numerical models, has great potential to incorporate machine learning and artificial intelligence (ML/AI) techniques. In this paper, we use U-Net, a type of convolutional neutral network (CNN), to predict the localized ensemble covariances for the Ensemble Kalman Filter (EnKF) algorithm. Using a 2-layer quasi-geostrophic model, U-Nets are trained using data from EnKF DA experiments. The trained U-Nets are then used to predict the flow-dependent localized error covariance matrices in U-Net Kalman Filter (UNetKF) experiments, which are compared to traditional 3-dimensional variational (3DVar), ensemble 3DVar (En3DVar) and EnKF methods. The performance of UNetKF can match or exceed that of 3DVar, En3DVar or EnKF. We also demonstrate that trained U-Nets can be transferred to a higher-resolution model for UNetKF implementation, which again performs competitively to 3DVar and EnKF, particularly for small ensemble sizes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: