Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-based Fuzzy System Optimisation via Automatic Differentiation -- FuzzyR as a Use Case (2403.12308v1)

Published 18 Mar 2024 in cs.AI

Abstract: Since their introduction, fuzzy sets and systems have become an important area of research known for its versatility in modelling, knowledge representation and reasoning, and increasingly its potential within the context explainable AI. While the applications of fuzzy systems are diverse, there has been comparatively little advancement in their design from a machine learning perspective. In other words, while representations such as neural networks have benefited from a boom in learning capability driven by an increase in computational performance in combination with advances in their training mechanisms and available tool, in particular gradient descent, the impact on fuzzy system design has been limited. In this paper, we discuss gradient-descent-based optimisation of fuzzy systems, focussing in particular on automatic differentiation -- crucial to neural network learning -- with a view to free fuzzy system designers from intricate derivative computations, allowing for more focus on the functional and explainability aspects of their design. As a starting point, we present a use case in FuzzyR which demonstrates how current fuzzy inference system implementations can be adjusted to leverage powerful features of automatic differentiation tools sets, discussing its potential for the future of fuzzy system design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
  2. N. Karnik and J. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1–4, pp. 195–220, 2001.
  3. J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made simple,” pp. 117–127, 2002.
  4. J. M. Mendel, R. I. John, and F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808–821, 2006.
  5. O. Castillo and P. Melin, “A review on the design and optimization of interval type-2 fuzzy controllers,” Applied Soft Computing, vol. 12, no. 4, pp. 1267–1278, 2012.
  6. D. Soria, J. M. Garibaldi, A. R. Green, D. G. Powe, C. C. Nolan, C. Lemetre, G. R. Ball, and I. O. Ellis, “A quantifier-based fuzzy classification system for breast cancer patients.” Artificial Intelligence in Medicine, vol. 58, no. 3, pp. 175–84, 2013.
  7. J. Alcalá-Fdez and J. M. Alonso, “A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends, and Prospects,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 40–56, feb 2016.
  8. F. A. Pontes, E. Curry, and M. Schukat, “A Comparative Study of Open-Source Fuzzy Modelling Toolkit Licenses and Features,” in 2023 IEEE International Conference on Fuzzy Systems (FUZZ), 2023, pp. 1–7.
  9. R. Babuska, “Fuzzy Modelling and Identification,” 2000.
  10. J. R. Castro, O. Castillo, and P. Melin, “An Interval Type-2 Fuzzy Logic Toolbox for Control Applications,” in Proceedings IEEE International Conference on Fuzzy Systems, 2007, pp. 1–6.
  11. The Mathworks, “Fuzzy Logic Toolbox - Design and simulate fuzzy logic systems,” https://www.mathworks.com/products/fuzzy-logic.html, 2019.
  12. J. M. Alonso and L. Magdalena, “Generating Understandable and Accurate Fuzzy Rule-Based Systems in a Java Environment,” in Fuzzy Logic and Applications, 2011, pp. 212–219.
  13. S. Guillaume and B. Charnomordic, “Fuzzy Inference Systems: an integrated modelling environment for collaboration between expert knowledge and data using FisPro,” Expert Systems with Applications, vol. 39, no. 10, pp. 8744–8755, aug 2012.
  14. C. Wagner, “Juzzy - A Java based toolkit for Type-2 Fuzzy Logic,” in Proceedings IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems, 2013, pp. 45–52.
  15. C. Wagner, M. Pierfitt, and J. McCulloch, “Juzzy online: An online toolkit for the design, implementation, execution and sharing of Type-1 and Type-2 fuzzy logic systems,” in Proceedings IEEE International Conference on Fuzzy Systems, 2014, pp. 2321–2328.
  16. J. McCulloch, “Fuzzycreator: A python-based toolkit for automatically generating and analysing data-driven fuzzy sets,” in Proceedings IEEE International Conference on Fuzzy Systems, 2017, pp. 1–6.
  17. J. Warner, J. Sexauer, Scikit-fuzzy, Twmeggs, Alexsavio, A. Unnikrishnan, G. Castelão, F. A. Pontes, T. Uelwer, Pd2f, Laurazh, F. Batista, Alexbuy, W. V. den Broeck, W. Song, T. G. Badger, R. A. M. Pérez, J. F. Power, H. Mishra, G. O. Trullols, A. Hörteborn, and 99991, “JDWarner/scikit-fuzzy: Scikit-Fuzzy version 0.4.2,” 2019.
  18. C. Chen, T. R. Razak, and J. M. Garibaldi, “FuzzyR: An Extended Fuzzy Logic Toolbox for the R Programming Language,” in Proceedings IEEE International Conference on Fuzzy Systems.   IEEE, 2020, pp. 1–8.
  19. C. Chen, Y. Zhao, C. Wagner, D. Pekaslan, and J. M. Garibaldi, “An Extension of the FuzzyR Toolbox for Non-Singleton Fuzzy Logic Systems,” in Proceedings IEEE International Conference on Fuzzy Systems.   IEEE, 2021, pp. 1–6.
  20. T. R. Razak, C. Chen, J. M. Garibaldi, and C. Wagner, “Designing the Hierarchical Fuzzy Systems Via FuzzyR Toolbox,” in Proceedings IEEE International Conference on Fuzzy Systems, 2021, pp. 1–6.
  21. X. Wang, M. Li, C. Chen, and J. M. Garibaldi, “The Design and Implementation of a Constrained Interval Type-2 Fuzzy System for Credit Card Fraud Detection,” in 2023 IEEE International Conference on Fuzzy Systems (FUZZ), 2023, pp. 1–7.
  22. J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685, 1993.
  23. D. Wu, “Twelve considerations in choosing between Gaussian and trapezoidal membership functions in interval type-2 fuzzy logic controllers,” in 2012 IEEE International Conference on Fuzzy Systems, 2012, pp. 1–8.
  24. D. Wu, Y. Yuan, J. Huang, and Y. Tan, “Optimize TSK Fuzzy Systems for Regression Problems: Minibatch Gradient Descent With Regularization, DropRule, and AdaBound (MBGD-RDA),” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp. 1003–1015, 2020.
  25. J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 1, pp. 84–98, 2004.
  26. J. M. Mendel, “General type-2 fuzzy logic systems made simple: a tutorial,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1162–1182, 2014.
  27. C. Wagner and H. Hagras, “Toward General Type-2 Fuzzy Logic Systems Based on zSlices,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 637–660, 2010.
  28. P. Melin, L. Astudillo, O. Castillo, F. Valdez, and M. Garcia, “Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm,” Expert Systems with Applications, vol. 40, no. 8, pp. 3185–3195, 2013.
  29. D. Wu and J. M. Mendel, “Designing practical interval type-2 fuzzy logic systems made simple,” in Proceedings IEEE International Conference on Fuzzy Systems, 2014, pp. 800–807.
  30. M. Almaraashi, R. John, A. Hopgood, and S. Ahmadi, “Learning of interval and general type-2 fuzzy logic systems using simulated annealing: Theory and practice,” Information Sciences, vol. 360, pp. 21–42, 2016.
  31. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  32. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12.   Red Hook, NY, USA: Curran Associates Inc., 2012, pp. 1097–1105.
  33. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
  34. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in PyTorch,” in NIPS 2017 Workshop on Autodiff, 2017.
  35. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d\\\backslash\textquotesingle Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019.
  36. S. Keydana, “Posit AI Blog: Please allow me to introduce myself: Torch for R,” 2020.
  37. C. Chen, J. M. Garibaldi, and T. Razak, “FuzzyR: Fuzzy Logic Toolkit for R,” https://CRAN.R-project.org/package=FuzzyR, 2019.
  38. R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988.
  39. C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models,” in Proceedings IEEE International Conference on Fuzzy Systems, 2016, pp. 602–609.

Summary

We haven't generated a summary for this paper yet.