Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Molecular Classification Using Hyperdimensional Graph Classification (2403.12307v1)

Published 18 Mar 2024 in cs.LG, cs.AI, cs.NE, and q-bio.QM

Abstract: Our work introduces an innovative approach to graph learning by leveraging Hyperdimensional Computing. Graphs serve as a widely embraced method for conveying information, and their utilization in learning has gained significant attention. This is notable in the field of chemoinformatics, where learning from graph representations plays a pivotal role. An important application within this domain involves the identification of cancerous cells across diverse molecular structures. We propose an HDC-based model that demonstrates comparable Area Under the Curve results when compared to state-of-the-art models like Graph Neural Networks (GNNs) or the Weisfieler-Lehman graph kernel (WL). Moreover, it outperforms previously proposed hyperdimensional computing graph learning methods. Furthermore, it achieves noteworthy speed enhancements, boasting a 40x acceleration in the training phase and a 15x improvement in inference time compared to GNN and WL models. This not only underscores the efficacy of the HDC-based method, but also highlights its potential for expedited and resource-efficient graph learning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. A. Bender and R. C. Glen, “Molecular similarity: a key technique in molecular informatics,” Org. Biomol. Chem., vol. 2, pp. 3204–3218, 2004. [Online]. Available: http://dx.doi.org/10.1039/B409813G
  2. P. Willett, “Searching techniques for databases of two- and three-dimensional chemical structures,” Journal of Medicinal Chemistry, vol. 48, no. 13, pp. 4183–4199, 2005, pMID: 15974568. [Online]. Available: https://doi.org/10.1021/jm0582165
  3. A. Rusinko, M. W. Farmen, C. G. Lambert, P. L. Brown, and S. S. Young, “Analysis of a large structure/biological activity data set using recursive partitioning,” Journal of Chemical Information and Computer Sciences, vol. 39, no. 6, pp. 1017–1026, 1999, pMID: 10614024. [Online]. Available: https://doi.org/10.1021/ci9903049
  4. D. Zmuidinavicius, R. Didziapetris, P. Japertas, A. Avdeef, and A. Petrauskas, “Classification structure-activity relations (c-sar) in prediction of human intestinal absorption,” Journal of Pharmaceutical Sciences, vol. 92, no. 3, pp. 621–633, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022354916311996
  5. P. Watson, “Naïve bayes classification using 2d pharmacophore feature triplet vectors,” Journal of Chemical Information and Modeling, vol. 48, no. 1, pp. 166–178, 2008, pMID: 18183968. [Online]. Available: https://doi.org/10.1021/ci7003253
  6. P. Labute, “Binary qsar: a new method for the determination of quantitative structure activity relationships,” Pacific Symposium on Biocomputing, no. 1, pp. 444–55, 1999, pMID: 18183968. [Online]. Available: https://doi:10.1142/9789814447300_0044
  7. H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell, “Optimal assignment kernels for attributed molecular graphs,” Proceedings of the 22nd international conference on Machine learning, 2005. [Online]. Available: https://api.semanticscholar.org/CorpusID:1459319
  8. G. Harper, J. Bradshaw, J. Gittins, D. Green, and A. Leach, “Prediction of biological activity for high-throughput screening using binary kernel discrimination,” Journal of chemical information and computer sciences, vol. 41, no. 5, p. 1295—1300, 2001. [Online]. Available: https://doi.org/10.1021/ci000397q
  9. K.-R. Müller, G. Rätsch, S. Sonnenburg, S. Mika, M. Grimm, and N. Heinrich, “Classifying ‘drug-likeness’ with kernel-based learning methods,” Journal of Chemical Information and Modeling, vol. 45, no. 2, pp. 249–253, 2005, pMID: 15807485. [Online]. Available: https://doi.org/10.1021/ci049737o
  10. G. Keserû, L. Molnár, and I. Greiner, “A neural network based virtual high throughput screening test for the prediction of cns activity,” Combinatorial chemistry high throughput screening, vol. 3, no. 6, p. 535—540, December 2000. [Online]. Available: https://doi.org/10.2174/1386207003331346
  11. X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph patterns by leap search,” in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’08.   New York, NY, USA: Association for Computing Machinery, 2008, p. 433–444. [Online]. Available: https://doi.org/10.1145/1376616.1376662
  12. S. Ranu and A. K. Singh, “Graphsig: A scalable approach to mining significant subgraphs in large graph databases,” in 2009 IEEE 25th International Conference on Data Engineering, 2009, pp. 844–855.
  13. N. Brown, “Chemoinformatics—an introduction for computer scientists,” ACM Comput. Surv., vol. 41, no. 2, feb 2009. [Online]. Available: https://doi.org/10.1145/1459352.1459353
  14. G. W. Adamson and J. A. Bush, “A method for the automatic classification of chemical structures,” Information Storage and Retrieval, vol. 9, no. 10, pp. 561–568, 1973. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0020027173900594
  15. A. Capecchi, D. Probst, and J.-L. Reymond, “One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome,” Journal of Cheminformatics, vol. 12, 06 2020.
  16. L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representations in ai-driven drug discovery: a review and practical guide,” Journal of Cheminformatics, vol. 12, 09 2020.
  17. A. Mrzic, P. Meysman, W. Bittremieux, P. Moris, B. Cule, B. Goethals, and K. Laukens, “Grasping frequent subgraph mining for bioinformatics applications,” BioData Mining, vol. 11, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:52184639
  18. S. Naulaerts, P. Meysman, W. Bittremieux, T. N. Vu, W. Berghe, B. Goethals, and K. Laukens, “A primer to frequent itemset mining for bioinformatics,” Briefings in bioinformatics, vol. 16, 10 2013.
  19. P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors,” Cognitive Computation, vol. 1, pp. 139–159, 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:733980
  20. A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis, and P. Kohli, “Discovering faster matrix multiplication algorithms with reinforcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.
  21. P. Vergés, M. Heddes, I. Nunes, T. Givargis, and A. Nicolau, “Hdcc: A hyperdimensional computing compiler for classification on embedded systems and high-performance computing,” 2023.
  22. A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen, “Adversarial learning attacks on graph-based iot malware detection systems,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, pp. 1296–1305.
  23. A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimensional biosignal processing: A case study for emg-based hand gesture recognition,” in International Conference on Rebooting Computing (ICRC).   IEEE, 2016, pp. 1–8.
  24. M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing for efficient speech recognition,” in International Conference on Rebooting Computing (ICRC).   IEEE, 2017, pp. 1–8.
  25. A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using brain-inspired hyperdimensional computing,” in International Symposium on Low Power Electronics and Design (ISLPED), 2016, pp. 64–69.
  26. I. Nunes, M. Heddes, T. Givargis, A. Nicolau, and A. Veidenbaum, “Graphhd: Efficient graph classification using hyperdimensional computing,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.
  27. P. Poduval, H. Alimohamadi, A. Zakeri, F. Imani, M. H. Najafi, T. Givargis, and M. Imani, “Graphd: Graph-based hyperdimensional memorization for brain-like cognitive learning,” Frontiers in Neuroscience, vol. 16, 02 2022.
  28. Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient dna pattern matching accelerator using hyperdimensional computing,” in 2020 Design, Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 115–120.
  29. C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, “Tudataset: A collection of benchmark datasets for learning with graphs,” in ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. [Online]. Available: www.graphlearning.io
  30. S. S. Keerthi, O. Chapelle, D. DeCoste, K. P. Bennett, and E. Parrado-Hernández, “Building support vector machines with reduced classifier complexity,” J. Mach. Learn. Res., vol. 7, pp. 1493–1515, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:13375961
  31. Y. Zhan and D. Shen, “Increasing the efficiency of support vector machine by simplifying the shape of separation hypersurface,” in Computational and Information Science, J. Zhang, J.-H. He, and Y. Fu, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 732–738.
  32. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in 2012 10th International Conference on Frontiers of Information Technology, 2012, pp. 257–260.
  33. X. Qi and C. Liu, “Enabling deep learning on iot edge: Approaches and evaluation,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp. 367–372.
  34. P. Verges, I. Nunes, M. Heddes, T. Givargis, and A. Nicolau, “Accelerating permute and n-gram operations for hyperdimensional learning in embedded systems,” in 2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA).   Los Alamitos, CA, USA: IEEE Computer Society, sep 2023, pp. 253–260. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/RTCSA58653.2023.00037
  35. N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed graphs,” in Proceedings of the 29th International Coference on International Conference on Machine Learning, ser. ICML’12.   Madison, WI, USA: Omnipress, 2012, p. 291–298.
  36. N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, vol. 12, no. 77, pp. 2539–2561, 2011. [Online]. Available: http://jmlr.org/papers/v12/shervashidze11a.html
  37. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” CoRR, vol. abs/1901.00596, 2019. [Online]. Available: http://arxiv.org/abs/1901.00596
  38. V. Cernigliaro, R. Peluso, B. Zedda, L. Silengo, E. Tolosano, R. Pellicano, F. Altruda, and S. Fagoonee, “Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases,” Cells, vol. 9, no. 2, 2020. [Online]. Available: https://www.mdpi.com/2073-4409/9/2/386
  39. O. Keunen, T. Taxt, R. Grüner, M. Lund-Johansen, J.-C. Tonn, T. Pavlin, R. Bjerkvig, S. P. Niclou, and F. Thorsen, “Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies,” Advanced Drug Delivery Reviews, vol. 76, pp. 98–115, 2014, targeted imaging. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169409X14001513
  40. X. Luo, J. Wu, J. Yang, S. Xue, H. Peng, C. Zhou, H. Chen, Z. Li, and Q. Z. Sheng, “Deep graph level anomaly detection with contrastive learning,” Scientific Reports, vol. 12, no. 1, p. 19867, 2022.
  41. L. Buck, T. Schmidt, M. Feist, P. Schwarzfischer, D. Kube, P. J. Oefner, H. U. Zacharias, M. Altenbuchinger, K. Dettmer, W. Gronwald, and R. Spang, “Anomaly detection in mixed high-dimensional molecular data,” Bioinformatics, vol. 39, no. 8, p. btad501, 08 2023. [Online]. Available: https://doi.org/10.1093/bioinformatics/btad501
  42. M. Sugiyama and K. M. Borgwardt, “Halting in random walk kernels,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15.   Cambridge, MA, USA: MIT Press, 2015, p. 1639–1647.
  43. P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for molecules,” Machine Learning, vol. 75, 10 2006.
  44. G. Nikolentzos, P. Meladianos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis, “Shortest-path graph kernels for document similarity,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, M. Palmer, R. Hwa, and S. Riedel, Eds.   Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017, pp. 1890–1900. [Online]. Available: https://aclanthology.org/D17-1202
  45. N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt, “Efficient graphlet kernels for large graph comparison,” in Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, D. van Dyk and M. Welling, Eds., vol. 5.   Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR, 16–18 Apr 2009, pp. 488–495. [Online]. Available: https://proceedings.mlr.press/v5/shervashidze09a.html
  46. H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell, “Optimal assignment kernels for attributed molecular graphs,” in Proceedings of the 22nd International Conference on Machine Learning, ser. ICML ’05.   New York, NY, USA: Association for Computing Machinery, 2005, p. 225–232. [Online]. Available: https://doi.org/10.1145/1102351.1102380
  47. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” 2019.
  48. D. Bajusz, A. Rácz, and K. Héberger, “Why is tanimoto index an appropriate choice for fingerprint-based similarity calculations?” Journal of Cheminformatics, vol. 7, 05 2015.
  49. P. J. Olver, “On multivariate interpolation,” Studies in Applied Mathematics, vol. 116, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID:8314098
  50. T. A. Plate, “Holographic reduced representation: Distributed representation for cognitive structures,” 2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:60591699
  51. T. Cohen and D. Widdows, “Bringing order to neural word embeddings with embeddings augmented by random permutations (EARP),” in Proceedings of the 22nd Conference on Computational Natural Language Learning.   Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 465–475. [Online]. Available: https://aclanthology.org/K18-1045
  52. P. Vergés, M. Heddes, I. Nunes, T. Givargis, and A. Nicolau, “Classification using hyperdimensional computing: A review with comparative analysis,” Computing in Science & Engineering.
  53. R. W. Gayler and S. D. Levy, “A distributed basis for analogical mapping,” 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:18842042
  54. P. Vergés, T. Givargis, and A. Nicolau, “Refinehd: Accurate and efficient single-pass adaptive learning using hyperdimensional computing,” EasyChair, 2023.
  55. L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking : Bringing order to the web,” in The Web Conference, 1999. [Online]. Available: https://api.semanticscholar.org/CorpusID:1508503
  56. M. Imani, J. Morris, S. Bosch, H. Shu, G. D. Micheli, and T. Rosing, “Adapthd: Adaptive efficient training for brain-inspired hyperdimensional computing,” in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019, pp. 1–4.
  57. A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system,” in 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021, pp. 56–61.
  58. M. Heddes, I. Nunes, P. Vergés, D. Kleyko, D. Abraham, T. Givargis, A. Nicolau, and A. Veidenbaum, “Torchhd: An open source python library to support research on hyperdimensional computing and vector symbolic architectures,” Journal of Machine Learning Research, vol. 24, no. 255, pp. 1–10, 2023. [Online]. Available: http://jmlr.org/papers/v24/23-0300.html
  59. R. W. Gayler, “Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience,” in Joint International Conference on Cognitive Science (ICCS/ASCS), 2003, pp. 133–138.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Igor Nunes (12 papers)
  2. Mike Heddes (10 papers)
  3. Tony Givargis (12 papers)
  4. Alexandru Nicolau (11 papers)
  5. Pere Verges (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.