Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane (2403.12303v1)

Published 18 Mar 2024 in cs.CG

Abstract: Polynomial partitioning techniques have recently led to improved geometric data structures for a variety of fundamental problems related to semialgebraic range searching and intersection searching in 3D and higher dimensions (e.g., see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021; Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led to improved algorithms for offline versions of semialgebraic range searching in 2D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show that these techniques can yield new data structures for a number of other 2D problems even for online queries: 1. Semialgebraic range stabbing. We present a data structure for $n$ semialgebraic ranges in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can count the number of ranges containing a query point in $O(n{1/4+\varepsilon})$ time, for an arbitrarily small constant $\varepsilon>0$. 2. Ray shooting amid algebraic arcs. We present a data structure for $n$ algebraic arcs in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can find the first arc hit by a query (straight-line) ray in $O(n{1/4+\varepsilon})$ time. 3. Intersection counting amid algebraic arcs. We present a data structure for $n$ algebraic arcs in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can count the number of intersection points with a query algebraic arc of constant description complexity in $O(n{1/2+\varepsilon})$ time. In particular, this implies an $O(n{3/2+\varepsilon})$-time algorithm for counting intersections between two sets of $n$ algebraic arcs in 2D.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. P. Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting and related problems. Internat. J. Comput. Geom. Appl., 23(4-5):233–251, 2013. Preliminary version in SoCG 2012. doi:10.1142/S0218195913600054.
  2. P. Afshani and P. Cheng. Lower bounds for semialgebraic range searching and stabbing problems. J. ACM, 70(2):16:1–16:26, 2023. Preliminary version in SoCG 2021. doi:10.1145/3578574.
  3. P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput., 21(3):540–570, 1992. Preliminary version in SoCG 1989. doi:10.1137/0221035.
  4. P. K. Agarwal. Range searching. In J. E. Goodman, J. O’Rourke, and C. Toth, editors, Handbook of Discrete and Computational Geometry. CRC Press, 2016.
  5. Can visibility graphs be represented compactly? Discret. Comput. Geom., 12:347–365, 1994. Preliminary version in SoCG 1993. doi:10.1007/BF02574385.
  6. Intersection queries for flat semi-algebraic objects in three dimensions and related problems. In Proc. 38th International Symposium on Computational Geometry (SoCG), pages 4:1–4:14. 2022. doi:10.4230/lipics.socg.2022.4.
  7. Intersection queries for flat semi-algebraic objects in three dimensions and related problems. CoRR, abs/2203.10241, 2022. arXiv:2203.10241.
  8. Efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760–787, 2021. Preliminary version in SoCG 2019. doi:10.1137/19M1268550.
  9. Semi-algebraic off-line range searching and biclique partitions in the plane. In Proc. 40th International Symposium on Computational Geometry (SoCG), 2024. To appear.
  10. P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput., 22(4):794–806, 1993. doi:10.1137/0222051.
  11. P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete Comput. Geom., 11(4):393–418, 1994. doi:10.1007/BF02574015.
  12. On range searching with semialgebraic sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.
  13. Lenses in arrangements of pseudo-circles and their applications. J. ACM, 51(2):139–186, 2004. doi:10.1145/972639.972641.
  14. Counting circular arc intersections. SIAM J. Comput., 22(4):778–793, 1993. Preliminary version in SoCG 1991. doi:10.1137/0222050.
  15. P. K. Agarwal and M. Sharir. Pseudo-line arrangements: duality, algorithms, and applications. SIAM J. Comput., 34(3):526–552, 2005. doi:10.1137/S0097539703433900.
  16. Intersection queries in curved objects. J. Algorithms, 15(2):229–266, 1993. Preliminary version in SoCG 1991. doi:10.1006/JAGM.1993.1040.
  17. B. Aronov and M. Sharir. Cutting circles into pseudo-segments and improved bounds for incidences and complexity of many faces. Discret. Comput. Geom., 28(4):475–490, 2002. doi:10.1007/S00454-001-0084-1.
  18. B. Aronov and M. Sharir. Almost tight bounds for eliminating depth cycles in three dimensions. Discret. Comput. Geom., 59(3):725–741, 2018. doi:10.1007/S00454-017-9920-9.
  19. E. Brieskorn and H. Knörrer. Plane Algebraic Curves. Springer Science & Business Media, 2012. Translated by J. Stillwell.
  20. T. M. Chan. Geometric applications of a randomized optimization technique. Discret. Comput. Geom., 22(4):547–567, 1999. Preliminary version in SoCG 1998. doi:10.1007/PL00009478.
  21. T. M. Chan. On levels in arrangements of curves. Discret. Comput. Geom., 29(3):375–393, 2003. doi:10.1007/S00454-002-2840-2.
  22. T. M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.
  23. T. M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012. Preliminary version in SoCG 2010. doi:10.1007/s00454-012-9410-z.
  24. T. M. Chan. Near-optimal randomized algorithms for selection in totally monotone matrices. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1483–1495, 2021. doi:10.1137/1.9781611976465.89.
  25. T. M. Chan. Finding triangles and other small subgraphs in geometric intersection graphs. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1777–1805, 2023. doi:10.1137/1.9781611977554.CH68.
  26. Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 190–210, 2022. doi:10.1137/1.9781611977073.10.
  27. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom., 9:145–158, 1993. doi:10.1007/BF02189314.
  28. Algorithms for bichromatic line-segment problems and polyhedral terrains. Algorithmica, 11(2):116–132, 1994. doi:10.1007/BF01182771.
  29. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. Combinatorica, 10(3):229–249, 1990. doi:10.1007/BF02122778.
  30. B. Chazelle and E. Welzl. Quasi-optimal range searching in space of finite VC-dimension. Discret. Comput. Geom., 4:467–489, 1989. doi:10.1007/BF02187743.
  31. Maximum flow and minimum-cost flow in almost-linear time. In Proc. 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
  32. Application of random sampling in computational geometry, II. Discret. Comput. Geom., 4:387–421, 1989. Preliminary version in SoCG 1988. doi:10.1007/BF02187740.
  33. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.
  34. New bounds on curve tangencies and orthogonalities. Discrete Analysis, 11 2016. doi:10.19086/da.990.
  35. E. Ezra and M. Sharir. Intersection searching amid tetrahedra in 4-space and efficient continuous collision detection. In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 51:1–51:17. 2022. doi:10.4230/lipics.esa.2022.51.
  36. E. Ezra and M. Sharir. On ray shooting for triangles in 3-space and related problems. SIAM J. Comput., 51(4):1065–1095, 2022. Preliminary version in SoCG 2021. doi:10.1137/21M1408245.
  37. T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995. doi:10.1006/JCSS.1995.1065.
  38. I. Y. Grabinsky. Deferred data structures for online disk range searching. Master’s thesis, Tel-Aviv University, February 2009. URL: http://www.cs.tau.ac.il/thesis/thesis/thesis_ido.pdf.
  39. L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Philos. Soc., 159(3):459–469, 2015. doi:10.1017/S0305004115000468.
  40. L. Guth and N. H. Katz. On the Erdős distinct distances problem in the plane. Ann. of Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.
  41. S. Har-Peled and M. Sharir. Online point location in planar arrangements and its applications. Discret. Comput. Geom., 26(1):19–40, 2001. doi:10.1007/S00454-001-0026-Y.
  42. Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discret. Comput. Geom., 48(3):499–517, 2012. doi:10.1007/S00454-012-9443-3.
  43. V. Koltun. Segment intersection searching problems in general settings. Discret. Comput. Geom., 30(1):25–44, 2003. Preliminary version in SoCG 2001. doi:10.1007/S00454-003-2924-7.
  44. A. Marcus and G. Tardos. Intersection reverse sequences and geometric applications. J. Comb. Theory, Ser. A, 113(4):675–691, 2006. doi:10.1016/J.JCTA.2005.07.002.
  45. J. Matoušek. Efficient partition trees. Discret. Comput. Geom., 8:315–334, 1992. Preliminary version in SoCG 1991. doi:10.1007/BF02293051.
  46. J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.
  47. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.
  48. M. Sharir and J. Zahl. Cutting algebraic curves into pseudo-segments and applications. J. Combin. Theory Ser. A, 150:1–35, 2017. doi:10.1016/j.jcta.2017.02.006.
  49. A. Solan. Cutting cylces of rods in space. In Proc. 14th Symposium on Computational Geometry (SoCG), pages 135–142, 1998. doi:10.1145/276884.276899.
  50. H. Tamaki and T. Tokuyama. How to cut pseudoparabolas into segments. Discret. Comput. Geom., 19(2):265–290, 1998. Preliminary version in SoCG 1995. doi:10.1007/PL00009345.
  51. E. Welzl. Partition trees for triangle counting and other range searching problems. In Proc. 4th Annual Symposium on Computational Geometry (SoCG), pages 23–33, 1988. doi:10.1145/73393.73397.
  52. E. Welzl. On spanning trees with low crossing numbers. In Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233–249. Springer, Berlin, 1992. doi:10.1007/3-540-55488-2_30.
Citations (1)

Summary

We haven't generated a summary for this paper yet.