Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane (2403.12303v1)
Abstract: Polynomial partitioning techniques have recently led to improved geometric data structures for a variety of fundamental problems related to semialgebraic range searching and intersection searching in 3D and higher dimensions (e.g., see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021; Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led to improved algorithms for offline versions of semialgebraic range searching in 2D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show that these techniques can yield new data structures for a number of other 2D problems even for online queries: 1. Semialgebraic range stabbing. We present a data structure for $n$ semialgebraic ranges in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can count the number of ranges containing a query point in $O(n{1/4+\varepsilon})$ time, for an arbitrarily small constant $\varepsilon>0$. 2. Ray shooting amid algebraic arcs. We present a data structure for $n$ algebraic arcs in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can find the first arc hit by a query (straight-line) ray in $O(n{1/4+\varepsilon})$ time. 3. Intersection counting amid algebraic arcs. We present a data structure for $n$ algebraic arcs in 2D of constant description complexity with $O(n{3/2+\varepsilon})$ preprocessing time and space, so that we can count the number of intersection points with a query algebraic arc of constant description complexity in $O(n{1/2+\varepsilon})$ time. In particular, this implies an $O(n{3/2+\varepsilon})$-time algorithm for counting intersections between two sets of $n$ algebraic arcs in 2D.
- P. Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting and related problems. Internat. J. Comput. Geom. Appl., 23(4-5):233–251, 2013. Preliminary version in SoCG 2012. doi:10.1142/S0218195913600054.
- P. Afshani and P. Cheng. Lower bounds for semialgebraic range searching and stabbing problems. J. ACM, 70(2):16:1–16:26, 2023. Preliminary version in SoCG 2021. doi:10.1145/3578574.
- P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput., 21(3):540–570, 1992. Preliminary version in SoCG 1989. doi:10.1137/0221035.
- P. K. Agarwal. Range searching. In J. E. Goodman, J. O’Rourke, and C. Toth, editors, Handbook of Discrete and Computational Geometry. CRC Press, 2016.
- Can visibility graphs be represented compactly? Discret. Comput. Geom., 12:347–365, 1994. Preliminary version in SoCG 1993. doi:10.1007/BF02574385.
- Intersection queries for flat semi-algebraic objects in three dimensions and related problems. In Proc. 38th International Symposium on Computational Geometry (SoCG), pages 4:1–4:14. 2022. doi:10.4230/lipics.socg.2022.4.
- Intersection queries for flat semi-algebraic objects in three dimensions and related problems. CoRR, abs/2203.10241, 2022. arXiv:2203.10241.
- Efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760–787, 2021. Preliminary version in SoCG 2019. doi:10.1137/19M1268550.
- Semi-algebraic off-line range searching and biclique partitions in the plane. In Proc. 40th International Symposium on Computational Geometry (SoCG), 2024. To appear.
- P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput., 22(4):794–806, 1993. doi:10.1137/0222051.
- P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete Comput. Geom., 11(4):393–418, 1994. doi:10.1007/BF02574015.
- On range searching with semialgebraic sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.
- Lenses in arrangements of pseudo-circles and their applications. J. ACM, 51(2):139–186, 2004. doi:10.1145/972639.972641.
- Counting circular arc intersections. SIAM J. Comput., 22(4):778–793, 1993. Preliminary version in SoCG 1991. doi:10.1137/0222050.
- P. K. Agarwal and M. Sharir. Pseudo-line arrangements: duality, algorithms, and applications. SIAM J. Comput., 34(3):526–552, 2005. doi:10.1137/S0097539703433900.
- Intersection queries in curved objects. J. Algorithms, 15(2):229–266, 1993. Preliminary version in SoCG 1991. doi:10.1006/JAGM.1993.1040.
- B. Aronov and M. Sharir. Cutting circles into pseudo-segments and improved bounds for incidences and complexity of many faces. Discret. Comput. Geom., 28(4):475–490, 2002. doi:10.1007/S00454-001-0084-1.
- B. Aronov and M. Sharir. Almost tight bounds for eliminating depth cycles in three dimensions. Discret. Comput. Geom., 59(3):725–741, 2018. doi:10.1007/S00454-017-9920-9.
- E. Brieskorn and H. Knörrer. Plane Algebraic Curves. Springer Science & Business Media, 2012. Translated by J. Stillwell.
- T. M. Chan. Geometric applications of a randomized optimization technique. Discret. Comput. Geom., 22(4):547–567, 1999. Preliminary version in SoCG 1998. doi:10.1007/PL00009478.
- T. M. Chan. On levels in arrangements of curves. Discret. Comput. Geom., 29(3):375–393, 2003. doi:10.1007/S00454-002-2840-2.
- T. M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.
- T. M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012. Preliminary version in SoCG 2010. doi:10.1007/s00454-012-9410-z.
- T. M. Chan. Near-optimal randomized algorithms for selection in totally monotone matrices. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1483–1495, 2021. doi:10.1137/1.9781611976465.89.
- T. M. Chan. Finding triangles and other small subgraphs in geometric intersection graphs. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1777–1805, 2023. doi:10.1137/1.9781611977554.CH68.
- Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 190–210, 2022. doi:10.1137/1.9781611977073.10.
- B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom., 9:145–158, 1993. doi:10.1007/BF02189314.
- Algorithms for bichromatic line-segment problems and polyhedral terrains. Algorithmica, 11(2):116–132, 1994. doi:10.1007/BF01182771.
- B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. Combinatorica, 10(3):229–249, 1990. doi:10.1007/BF02122778.
- B. Chazelle and E. Welzl. Quasi-optimal range searching in space of finite VC-dimension. Discret. Comput. Geom., 4:467–489, 1989. doi:10.1007/BF02187743.
- Maximum flow and minimum-cost flow in almost-linear time. In Proc. 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
- Application of random sampling in computational geometry, II. Discret. Comput. Geom., 4:387–421, 1989. Preliminary version in SoCG 1988. doi:10.1007/BF02187740.
- Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.
- New bounds on curve tangencies and orthogonalities. Discrete Analysis, 11 2016. doi:10.19086/da.990.
- E. Ezra and M. Sharir. Intersection searching amid tetrahedra in 4-space and efficient continuous collision detection. In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 51:1–51:17. 2022. doi:10.4230/lipics.esa.2022.51.
- E. Ezra and M. Sharir. On ray shooting for triangles in 3-space and related problems. SIAM J. Comput., 51(4):1065–1095, 2022. Preliminary version in SoCG 2021. doi:10.1137/21M1408245.
- T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995. doi:10.1006/JCSS.1995.1065.
- I. Y. Grabinsky. Deferred data structures for online disk range searching. Master’s thesis, Tel-Aviv University, February 2009. URL: http://www.cs.tau.ac.il/thesis/thesis/thesis_ido.pdf.
- L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Philos. Soc., 159(3):459–469, 2015. doi:10.1017/S0305004115000468.
- L. Guth and N. H. Katz. On the Erdős distinct distances problem in the plane. Ann. of Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.
- S. Har-Peled and M. Sharir. Online point location in planar arrangements and its applications. Discret. Comput. Geom., 26(1):19–40, 2001. doi:10.1007/S00454-001-0026-Y.
- Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discret. Comput. Geom., 48(3):499–517, 2012. doi:10.1007/S00454-012-9443-3.
- V. Koltun. Segment intersection searching problems in general settings. Discret. Comput. Geom., 30(1):25–44, 2003. Preliminary version in SoCG 2001. doi:10.1007/S00454-003-2924-7.
- A. Marcus and G. Tardos. Intersection reverse sequences and geometric applications. J. Comb. Theory, Ser. A, 113(4):675–691, 2006. doi:10.1016/J.JCTA.2005.07.002.
- J. Matoušek. Efficient partition trees. Discret. Comput. Geom., 8:315–334, 1992. Preliminary version in SoCG 1991. doi:10.1007/BF02293051.
- J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54(1):22–41, 2015. doi:10.1007/s00454-015-9701-2.
- N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.
- M. Sharir and J. Zahl. Cutting algebraic curves into pseudo-segments and applications. J. Combin. Theory Ser. A, 150:1–35, 2017. doi:10.1016/j.jcta.2017.02.006.
- A. Solan. Cutting cylces of rods in space. In Proc. 14th Symposium on Computational Geometry (SoCG), pages 135–142, 1998. doi:10.1145/276884.276899.
- H. Tamaki and T. Tokuyama. How to cut pseudoparabolas into segments. Discret. Comput. Geom., 19(2):265–290, 1998. Preliminary version in SoCG 1995. doi:10.1007/PL00009345.
- E. Welzl. Partition trees for triangle counting and other range searching problems. In Proc. 4th Annual Symposium on Computational Geometry (SoCG), pages 23–33, 1988. doi:10.1145/73393.73397.
- E. Welzl. On spanning trees with low crossing numbers. In Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233–249. Springer, Berlin, 1992. doi:10.1007/3-540-55488-2_30.