Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Circular Belief Propagation for Approximate Probabilistic Inference (2403.12106v1)

Published 17 Mar 2024 in cs.AI and cs.LG

Abstract: Belief Propagation (BP) is a simple probabilistic inference algorithm, consisting of passing messages between nodes of a graph representing a probability distribution. Its analogy with a neural network suggests that it could have far-ranging applications for neuroscience and artificial intelligence. Unfortunately, it is only exact when applied to cycle-free graphs, which restricts the potential of the algorithm. In this paper, we propose Circular Belief Propagation (CBP), an extension of BP which limits the detrimental effects of message reverberation caused by cycles by learning to detect and cancel spurious correlations and belief amplifications. We show in numerical experiments involving binary probabilistic graphs that CBP far outperforms BP and reaches good performance compared to that of previously proposed algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets