Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enriching User Shopping History: Empowering E-commerce with a Hierarchical Recommendation System (2403.12096v1)

Published 15 Mar 2024 in cs.IR and cs.AI

Abstract: Recommendation systems can provide accurate recommendations by analyzing user shopping history. A richer user history results in more accurate recommendations. However, in real applications, users prefer e-commerce platforms where the item they seek is at the lowest price. In other words, most users shop from multiple e-commerce platforms simultaneously; different parts of the user's shopping history are shared between different e-commerce platforms. Consequently, we assume in this study that any e-commerce platform has a complete record of the user's history but can only access some parts of it. If a recommendation system is able to predict the missing parts first and enrich the user's shopping history properly, it will be possible to recommend the next item more accurately. Our recommendation system leverages user shopping history to improve prediction accuracy. The proposed approach shows significant improvements in both NDCG@10 and HR@10.

Summary

We haven't generated a summary for this paper yet.