Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Consistency Model is an Effective Posterior Sample Approximation for Diffusion Inverse Solvers (2403.12063v2)

Published 9 Feb 2024 in cs.CV and cs.LG

Abstract: Diffusion Inverse Solvers (DIS) are designed to sample from the conditional distribution $p_{\theta}(X_0|y)$, with a predefined diffusion model $p_{\theta}(X_0)$, an operator $f(\cdot)$, and a measurement $y=f(x'0)$ derived from an unknown image $x'_0$. Existing DIS estimate the conditional score function by evaluating $f(\cdot)$ with an approximated posterior sample drawn from $p{\theta}(X_0|X_t)$. However, most prior approximations rely on the posterior means, which may not lie in the support of the image distribution, thereby potentially diverge from the appearance of genuine images. Such out-of-support samples may significantly degrade the performance of the operator $f(\cdot)$, particularly when it is a neural network. In this paper, we introduces a novel approach for posterior approximation that guarantees to generate valid samples within the support of the image distribution, and also enhances the compatibility with neural network-based operators $f(\cdot)$. We first demonstrate that the solution of the Probability Flow Ordinary Differential Equation (PF-ODE) with an initial value $x_t$ yields an effective posterior sample $p_{\theta}(X_0|X_t=x_t)$. Based on this observation, we adopt the Consistency Model (CM), which is distilled from PF-ODE, for posterior sampling. Furthermore, we design a novel family of DIS using only CM. Through extensive experiments, we show that our proposed method for posterior sample approximation substantially enhance the effectiveness of DIS for neural network operators $f(\cdot)$ (e.g., in semantic segmentation). Additionally, our experiments demonstrate the effectiveness of the new CM-based inversion techniques. The source code is provided in the supplementary material.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Universal guidance for diffusion models. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.  843–852, 2023. URL https://api.semanticscholar.org/CorpusID:256846836.
  2. Demystifying mmd gans. ArXiv, abs/1801.01401, 2018. URL https://api.semanticscholar.org/CorpusID:3531856.
  3. Tweedie moment projected diffusions for inverse problems. arXiv preprint arXiv:2310.06721, 2023.
  4. Importance weighted autoencoders. CoRR, abs/1509.00519, 2015. URL https://api.semanticscholar.org/CorpusID:11383178.
  5. Diffusion posterior sampling for general noisy inverse problems. ArXiv, abs/2209.14687, 2022a. URL https://api.semanticscholar.org/CorpusID:252596252.
  6. Improving diffusion models for inverse problems using manifold constraints. ArXiv, abs/2206.00941, 2022b. URL https://api.semanticscholar.org/CorpusID:249282628.
  7. Prompt-tuning latent diffusion models for inverse problems. ArXiv, abs/2310.01110, 2023. URL https://api.semanticscholar.org/CorpusID:263605744.
  8. Inverting the generator of a generative adversarial network. IEEE Transactions on Neural Networks and Learning Systems, 30:1967–1974, 2016. URL https://api.semanticscholar.org/CorpusID:3621348.
  9. Intermediate layer optimization for inverse problems using deep generative models. In International Conference on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:231925054.
  10. Diffusion models beat gans on image synthesis. ArXiv, abs/2105.05233, 2021. URL https://api.semanticscholar.org/CorpusID:234357997.
  11. Efron, B. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106:1602 – 1614, 2011. URL https://api.semanticscholar.org/CorpusID:23284154.
  12. Score-based diffusion models as principled priors for inverse imaging. arXiv preprint arXiv:2304.11751, 2023.
  13. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.
  14. Diffusion models as plug-and-play priors. ArXiv, abs/2206.09012, 2022. URL https://api.semanticscholar.org/CorpusID:249889060.
  15. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.  770–778, 2015. URL https://api.semanticscholar.org/CorpusID:206594692.
  16. Manifold preserving guided diffusion. ArXiv, abs/2311.16424, 2023. URL https://api.semanticscholar.org/CorpusID:265466093.
  17. Manifold preserving guided diffusion. In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=o3BxOLoxm1.
  18. Clipscore: A reference-free evaluation metric for image captioning. ArXiv, abs/2104.08718, 2021. URL https://api.semanticscholar.org/CorpusID:233296711.
  19. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Neural Information Processing Systems, 2017. URL https://api.semanticscholar.org/CorpusID:326772.
  20. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020.
  21. Elucidating the design space of diffusion-based generative models. ArXiv, abs/2206.00364, 2022. URL https://api.semanticscholar.org/CorpusID:249240415.
  22. Denoising diffusion restoration models. ArXiv, abs/2201.11793, 2022. URL https://api.semanticscholar.org/CorpusID:246411364.
  23. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013. URL https://api.semanticscholar.org/CorpusID:216078090.
  24. Variational diffusion models. ArXiv, abs/2107.00630, 2021. URL https://api.semanticscholar.org/CorpusID:235694314.
  25. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In ICML, 2022.
  26. Indoor scene layout estimation from a single image. 2018 24th International Conference on Pattern Recognition (ICPR), pp.  842–847, 2018. URL https://api.semanticscholar.org/CorpusID:54212984.
  27. Repaint: Inpainting using denoising diffusion probabilistic models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  11451–11461, 2022. URL https://api.semanticscholar.org/CorpusID:246240274.
  28. Latent consistency models: Synthesizing high-resolution images with few-step inference. ArXiv, abs/2310.04378, 2023. URL https://api.semanticscholar.org/CorpusID:263831037.
  29. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  2434–2442, 2020. URL https://api.semanticscholar.org/CorpusID:212634162.
  30. Reasons for the superiority of stochastic estimators over deterministic ones: Robustness, consistency and perceptual quality. In International Conference on Machine Learning, pp.  26474–26494. PMLR, 2023.
  31. Beyond first-order tweedie: Solving inverse problems using latent diffusion. ArXiv, abs/2312.00852, 2023a. URL https://api.semanticscholar.org/CorpusID:265609906.
  32. Solving linear inverse problems provably via posterior sampling with latent diffusion models. ArXiv, abs/2307.00619, 2023b. URL https://api.semanticscholar.org/CorpusID:259316242.
  33. Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine learning, pp.  2256–2265. PMLR, 2015.
  34. Pseudoinverse-guided diffusion models for inverse problems. In International Conference on Learning Representations, 2022.
  35. Pseudoinverse-guided diffusion models for inverse problems. In International Conference on Learning Representations, 2023a. URL https://api.semanticscholar.org/CorpusID:259298715.
  36. Loss-guided diffusion models for plug-and-play controllable generation. In International Conference on Machine Learning, 2023b. URL https://api.semanticscholar.org/CorpusID:260957043.
  37. Generative modeling by estimating gradients of the data distribution. In Neural Information Processing Systems, 2019. URL https://api.semanticscholar.org/CorpusID:196470871.
  38. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.
  39. Consistency models. In International Conference on Machine Learning, 2023c. URL https://api.semanticscholar.org/CorpusID:257280191.
  40. Stochastic gradient descent as approximate bayesian inference. Journal of Machine Learning Research, 18(134):1–35, 2017.
  41. Zero-shot image restoration using denoising diffusion null-space model. ArXiv, abs/2212.00490, 2022. URL https://api.semanticscholar.org/CorpusID:254125609.
  42. Practical and asymptotically exact conditional sampling in diffusion models. ArXiv, abs/2306.17775, 2023. URL https://api.semanticscholar.org/CorpusID:259309049.
  43. Idempotence and perceptual image compression. In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=Cy5v64DqEF.
  44. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.
  45. Freedom: Training-free energy-guided conditional diffusion model. ArXiv, abs/2303.09833, 2023. URL https://api.semanticscholar.org/CorpusID:257622962.
  46. The unreasonable effectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.  586–595, 2018. URL https://api.semanticscholar.org/CorpusID:4766599.
  47. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
  48. Çinlar, E. Probability and stochastics. 2011. URL https://api.semanticscholar.org/CorpusID:117914785.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.