Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adaptive stepsize algorithms for Langevin dynamics (2403.11993v4)

Published 18 Mar 2024 in math.NA and cs.NA

Abstract: We discuss the design of an invariant measure-preserving transformed dynamics for the numerical treatment of Langevin dynamics based on rescaling of time, with the goal of sampling from an invariant measure. Given an appropriate monitor function which characterizes the numerical difficulty of the problem as a function of the state of the system, this method allows the stepsizes to be reduced only when necessary, facilitating efficient recovery of long-time behavior. We study both the overdamped and underdamped Langevin dynamics. We investigate how an appropriate correction term that ensures preservation of the invariant measure should be incorporated into a numerical splitting scheme. Finally, we demonstrate the use of the technique in several model systems, including a Bayesian sampling problem with a steep prior.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 64 likes.

Upgrade to Pro to view all of the tweets about this paper: