Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Numerical method for nonlinear Kolmogorov PDEs via sensitivity analysis (2403.11910v2)

Published 18 Mar 2024 in math.NA, cs.NA, math.OC, and math.PR

Abstract: We examine nonlinear Kolmogorov partial differential equations (PDEs). Here the nonlinear part of the PDE comes from its Hamiltonian where one maximizes over all possible drift and diffusion coefficients which fall within a $\varepsilon$-neighborhood of pre-specified baseline coefficients. Our goal is to quantify and compute how sensitive those PDEs are to such a small nonlinearity, and then use the results to develop an efficient numerical method for their approximation. We show that as $\varepsilon\downarrow 0$, the nonlinear Kolmogorov PDE equals the linear Kolmogorov PDE defined with respect to the corresponding baseline coefficients plus $\varepsilon$ times a correction term which can be also characterized by the solution of another linear Kolmogorov PDE involving the baseline coefficients. As these linear Kolmogorov PDEs can be efficiently solved in high-dimensions by exploiting their Feynman-Kac representation, our derived sensitivity analysis then provides a Monte Carlo based numerical method which can efficiently solve these nonlinear Kolmogorov equations. We establish an error and complexity analysis for our numerical method. Moreover, we provide numerical examples in up to 100 dimensions to empirically demonstrate the applicability of our numerical method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.