Measuring Quantum Information Leakage Under Detection Threat (2403.11433v1)
Abstract: Gentle quantum leakage is proposed as a measure of information leakage to arbitrary eavesdroppers that aim to avoid detection. Gentle (also sometimes referred to as weak or non-demolition) measurements are used to encode the desire of the eavesdropper to evade detection. The gentle quantum leakage meets important axioms proposed for measures of information leakage including positivity, independence, and unitary invariance. Global depolarizing noise, an important family of physical noise in quantum devices, is shown to reduce gentle quantum leakage (and hence can be used as a mechanism to ensure privacy or security). A lower bound for the gentle quantum leakage based on asymmetric approximate cloning is presented. This lower bound relates information leakage to mutual incompatibility of quantum states. A numerical example, based on the encoding in the celebrated BB84 quantum key distribution algorithm, is used to demonstrate the results.
- C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014.
- M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.
- A. K. Ekert, B. Huttner, G. M. Palma, and A. Peres, “Eavesdropping on quantum-cryptographical systems,” Physical Review A, vol. 50, no. 2, p. 1047, 1994.
- C. A. Fuchs and A. Peres, “Quantum-state disturbance versus information gain: Uncertainty relations for quantum information,” Physical Review A, vol. 53, no. 4, p. 2038, 1996.
- C. A. Fuchs, “Information gain vs. state disturbance in quantum theory,” Fortschritte der Physik: Progress of Physics, vol. 46, no. 4-5, pp. 535–565, 1998.
- C. A. Fuchs and K. Jacobs, “Information-tradeoff relations for finite-strength quantum measurements,” Physical Review A, vol. 63, no. 6, p. 062305, 2001.
- K. Banaszek, “Information gain versus state disturbance for a single qubit,” Open Systems & Information Dynamics, vol. 13, no. 1, pp. 1–16, 2006.
- I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1625–1657, 2019.
- F. Farokhi, “Maximal information leakage from quantum encoding of classical data,” Phys. Rev. A, vol. 109, p. 022608, Feb 2024.
- J. Liao, O. Kosut, L. Sankar, and F. du Pin Calmon, “Tunable measures for information leakage and applications to privacy-utility tradeoffs,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8043–8066, 2019.
- F. Farokhi and N. Ding, “Measuring information leakage in non-stochastic brute-force guessing,” in 2020 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2021.
- S. Aaronson and G. N. Rothblum, “Gentle measurement of quantum states and differential privacy,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 322–333, 2019.
- S. Verdu, “α𝛼\alphaitalic_α-mutual information,” in 2015 Information Theory and Applications Workshop (ITA), pp. 1–6, 2015.
- M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, “On quantum Rényi entropies: A new generalization and some properties,” Journal of Mathematical Physics, vol. 54, no. 12, 2013.
- K. M. R. Audenaert and N. Datta, “α𝛼\alphaitalic_α-z𝑧zitalic_z-Rényi relative entropies,” Journal of Mathematical Physics, vol. 56, no. 2, p. 022202, 2015.
- J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. S. Kim, and J. Knolle, “Simple mitigation of global depolarizing errors in quantum simulations,” Phys. Rev. E, vol. 104, p. 035309, Sep 2021.
- F. Farokhi, “Barycentric and pairwise rényi quantum leakage,” arXiv preprint arXiv:2402.06156, 2024.
- T. Nuradha, Z. Goldfeld, and M. M. Wilde, “Quantum pufferfish privacy: A flexible privacy framework for quantum systems,” arXiv preprint arXiv:2306.13054, 2023.
- A. Mitra and P. Mandayam, “On optimal cloning and incompatibility,” Journal of Physics A: Mathematical and Theoretical, vol. 54, no. 40, p. 405303, 2021.
- M. Wilde, Quantum Information Theory. Quantum Information Theory, Cambridge University Press, 2013.
- H. Wiseman and G. Milburn, Quantum Measurement and Control. Cambridge University Press, 2010.
- M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Science and Technology, vol. 4, no. 4, p. 043001, 2019.
- C. Hirche, C. Rouzé, and D. S. Franca, “Quantum differential privacy: An information theory perspective,” IEEE Transactions on Information Theory, vol. 69, no. 9, pp. 5771–5787, 2023.
- W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982.
- D. Bruß, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A. Smolin, “Optimal universal and state-dependent quantum cloning,” Physical Review A, vol. 57, no. 4, p. 2368, 1998.
- V. Bužek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,” Physical Review A, vol. 54, no. 3, p. 1844, 1996.
- I. Nechita, C. Pellegrini, and D. Rochette, “The asymmetric quantum cloning region,” Letters in Mathematical Physics, vol. 113, no. 3, p. 74, 2023.
- Farhad Farokhi (80 papers)
- Sejeong Kim (38 papers)