Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors (2403.11407v2)

Published 18 Mar 2024 in cs.LG and stat.ML

Abstract: Recent advancements in solving Bayesian inverse problems have spotlighted denoising diffusion models (DDMs) as effective priors. Although these have great potential, DDM priors yield complex posterior distributions that are challenging to sample. Existing approaches to posterior sampling in this context address this problem either by retraining model-specific components, leading to stiff and cumbersome methods, or by introducing approximations with uncontrolled errors that affect the accuracy of the produced samples. We present an innovative framework, divide-and-conquer posterior sampling, which leverages the inherent structure of DDMs to construct a sequence of intermediate posteriors that guide the produced samples to the target posterior. Our method significantly reduces the approximation error associated with current techniques without the need for retraining. We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems. The code is available at \url{https://github.com/Badr-MOUFAD/dcps}

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: