Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quasi-Monte Carlo and importance sampling methods for Bayesian inverse problems (2403.11374v1)

Published 17 Mar 2024 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Importance Sampling (IS), an effective variance reduction strategy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method, to approximate posterior expectations arising from Bayesian Inverse Problems (BIPs) where the posterior density tends to concentrate as the intensity of noise diminishes. Within the framework of weighted Hilbert spaces, we first establish the convergence rate of the lattice rule for a large class of unbounded integrands. This method extends to the analysis of QMC combined with IS in BIPs. Furthermore, we explore the robustness of the IS-based randomly shifted rank-1 lattice rule by determining the quadrature error rate with respect to the noise level. The effects of using Gaussian distributions and $t$-distributions as the proposal distributions on the error rate of QMC are comprehensively investigated. We find that the error rate may deteriorate at low intensity of noise when using improper proposals, such as the prior distribution. To reclaim the effectiveness of QMC, we propose a new IS method such that the lattice rule with $N$ quadrature points achieves an optimal error rate close to $O(N{-1})$, which is insensitive to the noise level. Numerical experiments are conducted to support the theoretical results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.