Stitching, Fine-tuning, Re-training: A SAM-enabled Framework for Semi-supervised 3D Medical Image Segmentation (2403.11229v2)
Abstract: Segment Anything Model (SAM) fine-tuning has shown remarkable performance in medical image segmentation in a fully supervised manner, but requires precise annotations. To reduce the annotation cost and maintain satisfactory performance, in this work, we leverage the capabilities of SAM for establishing semi-supervised medical image segmentation models. Rethinking the requirements of effectiveness, efficiency, and compatibility, we propose a three-stage framework, i.e., Stitching, Fine-tuning, and Re-training (SFR). The current fine-tuning approaches mostly involve 2D slice-wise fine-tuning that disregards the contextual information between adjacent slices. Our stitching strategy mitigates the mismatch between natural and 3D medical images. The stitched images are then used for fine-tuning SAM, providing robust initialization of pseudo-labels. Afterwards, we train a 3D semi-supervised segmentation model while maintaining the same parameter size as the conventional segmenter such as V-Net. Our SFR framework is plug-and-play, and easily compatible with various popular semi-supervised methods. We also develop an extended framework SFR$+$ with selective fine-tuning and re-training through confidence estimation. Extensive experiments validate that our SFR and SFR$+$ achieve significant improvements in both moderate annotation and scarce annotation across five datasets. In particular, SFR framework improves the Dice score of Mean Teacher from 29.68% to 74.40% with only one labeled data of LA dataset.
- X. Wang, X. Zhang, Y. Cao, W. Wang, C. Shen, and T. Huang, “Seggpt: Towards segmenting everything in context,” in ICCV, October 2023, pp. 1130–1140.
- X. Zou, J. Yang, H. Zhang, F. Li, L. Li, J. Wang, L. Wang, J. Gao, and Y. J. Lee, “Segment everything everywhere all at once,” NIPS, vol. 36, 2023.
- A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” in ICCV, 2023, pp. 4015–4026.
- A. Khani, S. Asgari, A. Sanghi, A. M. Amiri, and G. Hamarneh, “SLiMe: Segment like me,” in ICLR, 2024.
- J. Wu, R. Fu, H. Fang, Y. Liu, Z. Wang, Y. Xu, Y. Jin, and T. Arbel, “Medical SAM Adapter: Adapting segment anything model for medical image segmentation,” arXiv preprint arXiv:2304.12620, 2023.
- K. Zhang and D. Liu, “Customized segment anything model for medical image segmentation,” arXiv preprint arXiv:2304.13785, 2023.
- Z. Xiong, Q. Xia, Z. Hu, N. Huang, C. Bian, Y. Zheng, S. Vesal, N. Ravikumar, A. Maier, X. Yang et al., “A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging,” Medical Image Analysis, vol. 67, p. 101832, 2021.
- D. Chen, Y. Bai, W. Shen, Q. Li, L. Yu, and Y. Wang, “MagicNet: Semi-supervised multi-organ segmentation via magic-cube partition and recovery,” in CVPR, 2023, pp. 23 869–23 878.
- Z. Xu, Y. Wang, D. Lu, X. Luo, J. Yan, Y. Zheng, and R. K.-y. Tong, “Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation,” Medical Image Analysis, vol. 88, p. 102880, 2023.
- Y. Bai, D. Chen, Q. Li, W. Shen, and Y. Wang, “Bidirectional copy-paste for semi-supervised medical image segmentation,” in CVPR, 2023, pp. 11 514–11 524.
- L. Wu, L. Fang, X. He, M. He, J. Ma, and Z. Zhong, “Querying labeled for unlabeled: Cross-image semantic consistency guided semi-supervised semantic segmentation,” IEEE TPAMI, 2023.
- L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng, “Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation,” in MICCAI. Springer, 2019, pp. 605–613.
- A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” NIPS, vol. 30, 2017.
- Y. Ouali, C. Hudelot, and M. Tami, “Semi-supervised semantic segmentation with cross-consistency training,” in CVPR, 2020, pp. 12 674–12 684.
- X. Chen, Y. Yuan, G. Zeng, and J. Wang, “Semi-supervised semantic segmentation with cross pseudo supervision,” in CVPR, 2021, pp. 2613–2622.
- Y. Wang, B. Xiao, X. Bi, W. Li, and X. Gao, “MCF: Mutual correction framework for semi-supervised medical image segmentation,” in CVPR, 2023, pp. 15 651–15 660.
- J. Miao, C. Chen, F. Liu, H. Wei, and P.-A. Heng, “CauSSL: Causality-inspired semi-supervised learning for medical image segmentation,” in ICCV, 2023, pp. 21 426–21 437.
- F. Wu and X. Zhuang, “Minimizing estimated risks on unlabeled data: a new formulation for semi-supervised medical image segmentation,” IEEE TPAMI, vol. 45, no. 5, pp. 6021–6036, 2022.
- J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment anything in medical images,” Nature Communications, vol. 15, no. 1, p. 654, 2024.
- X. Lin, Y. Xiang, L. Zhang, X. Yang, Z. Yan, and L. Yu, “SAMUS: Adapting segment anything model for clinically-friendly and generalizable ultrasound image segmentation,” arXiv preprint arXiv:2309.06824, 2023.
- J. Zhang, H. Peng, K. Wu, M. Liu, B. Xiao, J. Fu, and L. Yuan, “Minivit: Compressing vision transformers with weight multiplexing,” in CVPR, 2022, pp. 12 145–12 154.
- T. Chen, Z. Zhang, Y. Cheng, A. Awadallah, and Z. Wang, “The principle of diversity: Training stronger vision transformers calls for reducing all levels of redundancy,” in CVPR, 2022, pp. 12 020–12 030.
- A. Aghajanyan, L. Zettlemoyer, and S. Gupta, “Intrinsic dimensionality explains the effectiveness of language model fine-tuning,” arXiv preprint arXiv:2012.13255, 2020.
- L. Alzubaidi, M. Al-Amidie, A. Al-Asadi, A. J. Humaidi, O. Al-Shamma, M. A. Fadhel, J. Zhang, J. Santamaría, and Y. Duan, “Novel transfer learning approach for medical imaging with limited labeled data,” Cancers, vol. 13, no. 7, p. 1590, 2021.
- R. Jiao, Y. Zhang, L. Ding, B. Xue, J. Zhang, R. Cai, and C. Jin, “Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation,” Computers in Biology and Medicine, p. 107840, 2023.
- F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth International Conference on 3D vision (3DV). IEEE, 2016, pp. 565–571.
- S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu et al., “Grounding dino: Marrying dino with grounded pre-training for open-set object detection,” arXiv preprint arXiv:2303.05499, 2023.
- Y. Liu, J. Zhang, Z. She, A. Kheradmand, and M. Armand, “SAMM (Segment Any Medical Model): A 3d slicer integration to sam,” arXiv preprint arXiv:2304.05622, 2023.
- T. Wald, S. Roy, G. Koehler, N. Disch, M. R. Rokuss, J. Holzschuh, D. Zimmerer, and K. Maier-Hein, “Sam. md: Zero-shot medical image segmentation capabilities of the segment anything model,” in MIDL, short paper track, 2023.
- V. I. Butoi*, J. J. G. Ortiz*, T. Ma, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “Universeg: Universal medical image segmentation,” ICCV, 2023.
- Z. Huang, H. Wang, Z. Deng, J. Ye, Y. Su, H. Sun, J. He, Y. Gu, L. Gu, S. Zhang et al., “Stu-net: Scalable and transferable medical image segmentation models empowered by large-scale supervised pre-training,” arXiv preprint arXiv:2304.06716, 2023.
- J. Cheng, J. Ye, Z. Deng, J. Chen, T. Li, H. Wang, Y. Su, Z. Huang, J. Chen, L. Jiang et al., “SAM-Med2D,” arXiv preprint arXiv:2308.16184, 2023.
- H. Wang, S. Guo, J. Ye, Z. Deng, J. Cheng, T. Li, J. Chen, Y. Su, Z. Huang, Y. Shen et al., “SAM-Med3D,” arXiv preprint arXiv:2310.15161, 2023.
- Y. Huang, X. Yang, L. Liu, H. Zhou, A. Chang, X. Zhou, R. Chen, J. Yu, J. Chen, C. Chen et al., “Segment anything model for medical images?” Medical Image Analysis, vol. 92, p. 103061, 2024.
- M. A. Mazurowski, H. Dong, H. Gu, J. Yang, N. Konz, and Y. Zhang, “Segment anything model for medical image analysis: an experimental study,” Medical Image Analysis, vol. 89, p. 102918, 2023.
- S. Gong, Y. Zhong, W. Ma, J. Li, Z. Wang, J. Zhang, P.-A. Heng, and Q. Dou, “3dsam-adapter: Holistic adaptation of sam from 2d to 3d for promptable medical image segmentation,” arXiv preprint arXiv:2306.13465, 2023.
- E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large language models,” in ICLR, 2022.
- D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on challenges in representation learning, ICML, vol. 3, no. 2. Atlanta, 2013, p. 896.
- W. Bai, O. Oktay, M. Sinclair, H. Suzuki, M. Rajchl, G. Tarroni, B. Glocker, A. King, P. M. Matthews, and D. Rueckert, “Semi-supervised learning for network-based cardiac MR image segmentation,” in MICCAI. Springer, 2017, pp. 253–260.
- K. Chaitanya, E. Erdil, N. Karani, and E. Konukoglu, “Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation,” Medical Image Analysis, vol. 87, p. 102792, 2023.
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,” http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
- N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning for NLP,” in ICML. PMLR, 2019, pp. 2790–2799.
- X. Luo, J. Chen, T. Song, and G. Wang, “Semi-supervised medical image segmentation through dual-task consistency,” in AAAI, vol. 35, no. 10, 2021, pp. 8801–8809.
- V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and D. Lopez-Paz, “Interpolation consistency training for semi-supervised learning,” Neural Networks, vol. 145, pp. 90–106, 2022.
- Z. Xu, Y. Wang, D. Lu, L. Yu, J. Yan, J. Luo, K. Ma, Y. Zheng, and R. K.-y. Tong, “All-around real label supervision: Cyclic prototype consistency learning for semi-supervised medical image segmentation,” IEEE JBHI, vol. 26, no. 7, pp. 3174–3184, 2022.
- X. Luo, G. Wang, W. Liao, J. Chen, T. Song, Y. Chen, S. Zhang, D. N. Metaxas, and S. Zhang, “Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency,” Medical Image Analysis, vol. 80, p. 102517, 2022.
- Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: learning dense volumetric segmentation from sparse annotation,” in MICCAI. Springer, 2016, pp. 424–432.
- B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest et al., “The multimodal brain tumor image segmentation benchmark (BRATS),” IEEE TMI, vol. 34, no. 10, pp. 1993–2024, 2014.
- S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1, pp. 1–13, 2017.
- S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge,” arXiv preprint arXiv:1811.02629, 2018.
- B. Landman, Z. Xu, J. Igelsias, M. Styner, T. Langerak, and A. Klein, “Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge,” in Proc. MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge, vol. 5, 2015, p. 12.
- E. Gibson, F. Giganti, Y. Hu, E. Bonmati, S. Bandula, K. Gurusamy, B. Davidson, S. P. Pereira, M. J. Clarkson, and D. C. Barratt, “Automatic multi-organ segmentation on abdominal ct with dense v-networks,” IEEE TMI, vol. 37, no. 8, pp. 1822–1834, 2018.
- Y. Wu, Z. Wu, Q. Wu, Z. Ge, and J. Cai, “Exploring smoothness and class-separation for semi-supervised medical image segmentation,” in MICCAI. Springer, 2022, pp. 34–43.
- J. Liu, C. Desrosiers, and Y. Zhou, “Semi-supervised medical image segmentation using cross-model pseudo-supervision with shape awareness and local context constraints,” in MICCAI. Springer, 2022, pp. 140–150.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.