Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Partitioned Neural Network Training via Synthetic Intermediate Labels (2403.11204v2)

Published 17 Mar 2024 in cs.LG, cs.AI, and cs.DC

Abstract: The proliferation of extensive neural network architectures, particularly deep learning models, presents a challenge in terms of resource-intensive training. GPU memory constraints have become a notable bottleneck in training such sizable models. Existing strategies, including data parallelism, model parallelism, pipeline parallelism, and fully sharded data parallelism, offer partial solutions. Model parallelism, in particular, enables the distribution of the entire model across multiple GPUs, yet the ensuing data communication between these partitions slows down training. Additionally, the substantial memory overhead required to store auxiliary parameters on each GPU compounds computational demands. Instead of using the entire model for training, this study advocates partitioning the model across GPUs and generating synthetic intermediate labels to train individual segments. These labels, produced through a random process, mitigate memory overhead and computational load. This approach results in a more efficient training process that minimizes data communication while maintaining model accuracy. To validate this method, a 6-layer fully connected neural network is partitioned into two parts and its performance is assessed on the extended MNIST dataset. Experimental results indicate that the proposed approach achieves similar testing accuracies to conventional training methods, while significantly reducing memory and computational requirements. This work contributes to mitigating the resource-intensive nature of training large neural networks, paving the way for more efficient deep learning model development.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: