Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The truncated EM scheme for multiple-delay SDEs with irregular coefficients and application to stochastic volatility model (2403.11178v1)

Published 17 Mar 2024 in math.NA and cs.NA

Abstract: This paper focuses on the numerical scheme for multiple-delay stochastic differential equations with partially H\"older continuous drifts and locally H\"older continuous diffusion coefficients. To handle with the superlinear terms in coefficients, the truncated Euler-Maruyama scheme is employed. Under the given conditions, the convergence rates at time $T$ in both $\mathcal{L}{1}$ and $\mathcal{L}{2}$ senses are shown by virtue of the Yamada-Watanabe approximation technique. Moreover, the convergence rates over a finite time interval $[0,T]$ are also obtained. Additionally, it should be noted that the convergence rates will not be affected by the number of delay variables. Finally, we perform the numerical experiments on the stochastic volatility model to verify the reliability of the theoretical results.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.