Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Study on JIT Defect Prediction Based on BERT-style Model (2403.11158v1)

Published 17 Mar 2024 in cs.SE

Abstract: Previous works on Just-In-Time (JIT) defect prediction tasks have primarily applied pre-trained models directly, neglecting the configurations of their fine-tuning process. In this study, we perform a systematic empirical study to understand the impact of the settings of the fine-tuning process on BERT-style pre-trained model for JIT defect prediction. Specifically, we explore the impact of different parameter freezing settings, parameter initialization settings, and optimizer strategies on the performance of BERT-style models for JIT defect prediction. Our findings reveal the crucial role of the first encoder layer in the BERT-style model and the project sensitivity to parameter initialization settings. Another notable finding is that the addition of a weight decay strategy in the Adam optimizer can slightly improve model performance. Additionally, we compare performance using different feature extractors (FCN, CNN, LSTM, transformer) and find that a simple network can achieve great performance. These results offer new insights for fine-tuning pre-trained models for JIT defect prediction. We combine these findings to find a cost-effective fine-tuning method based on LoRA, which achieve a comparable performance with only one-third memory consumption than original fine-tuning process.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.