A lightweight deep learning pipeline with DRDA-Net and MobileNet for breast cancer classification (2403.11135v1)
Abstract: Accurate and early detection of breast cancer is essential for successful treatment. This paper introduces a novel deep-learning approach for improved breast cancer classification in histopathological images, a crucial step in diagnosis. Our method hinges on the Dense Residual Dual-Shuffle Attention Network (DRDA-Net), inspired by ShuffleNet's efficient architecture. DRDA-Net achieves exceptional accuracy across various magnification levels on the BreaKHis dataset, a breast cancer histopathology analysis benchmark. However, for real-world deployment, computational efficiency is paramount. We integrate a pre-trained MobileNet model renowned for its lightweight design to address computational. MobileNet ensures fast execution even on devices with limited resources without sacrificing performance. This combined approach offers a promising solution for accurate breast cancer diagnosis, paving the way for faster and more accessible screening procedures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.