Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Neural Network NMPC for Computationally Tractable Optimal Power Management of Hybrid Electric Vehicle (2403.11104v1)

Published 17 Mar 2024 in eess.SY and cs.SY

Abstract: This study presents a method for deep neural network nonlinear model predictive control (DNN-MPC) to reduce computational complexity, and we show its practical utility through its application in optimizing the energy management of hybrid electric vehicles (HEVs). For optimal power management of HEVs, we first design the online NMPC to collect the data set, and the deep neural network is trained to approximate the NMPC solutions. We assess the effectiveness of our approach by conducting comparative simulations with rule and online NMPC-based power management strategies for HEV, evaluating both fuel consumption and computational complexity. Lastly, we verify the real-time feasibility of our approach through process-in-the-loop (PIL) testing. The test results demonstrate that the proposed method closely approximates the NMPC performance while substantially reducing the computational burden.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.