Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secrecy Outage Probability Analysis for Downlink RIS-NOMA Networks with On-Off Control (2403.11097v1)

Published 17 Mar 2024 in cs.IT, cs.PF, and math.IT

Abstract: Reconfigurable intelligent surface (RIS) has been regarded as a promising technology since it has ability to create the favorable channel conditions. This paper investigates the secure communications of RIS assisted non-orthogonal multiple access (NOMA) networks, where both external and internal eavesdropping scenarios are taken into consideration. More specifically, novel approximate and asymptotic expressions of secrecy outage probability (SOP) for the k-th legitimate user (LU) are derived by invoking imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC). To characterize the secrecy performance of RIS-NOMA networks, the diversity order of the k-th LU with ipSIC/pSIC is obtained in the high signal-to-noise ratio region. The secrecy system throughput of RIS-NOMA networks is discussed in delay-limited transmission mode. Numerical results are presented to verify theoretical analysis that: i) The SOP of RIS-NOMA networks is superior to that of RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication schemes; ii) As the number of reflecting elements increases, the RIS-NOMA networks are capable of achieving the enhanced secrecy performance; and iii) The RIS-NOMA networks have better secrecy system throughput than that of RIS-OMA networks and conventional cooperative communication schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep. 2015.
  2. Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE, vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
  3. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” SCI CHINA INFORM SCI, vol. 64, no. 1, pp. 1–74, 2021.
  4. J. Choi, “Non-orthogonal multiple access in downlink coordinated two-point systems,” IEEE Commun. Lett., vol. 18, no. 2, pp. 313–316, Feb. 2014.
  5. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Feb. 2017.
  6. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.
  7. X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, “Exploiting full/half-duplex user relaying in NOMA systems,” IEEE Trans. Commun., vol. 66, no. 2, pp. 560–575, Feb. 2018.
  8. Q. Y. Liau and C. Y. Leow, “Successive user relaying in cooperative NOMA system,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 921–924, Jun. 2019.
  9. Y.-B. Kim, K. Yamazaki, and B. C. Jung, “Virtual full-duplex cooperative NOMA: Relay selection and interference cancellation,” IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5882–5893, Dec. 2019.
  10. X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, “Residual transceiver hardware impairments on cooperative NOMA networks,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 680–695, Jan. 2020.
  11. S. Mounchili and S. Hamouda, “Pairing distance resolution and power control for massive connectivity improvement in NOMA systems,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4093–4103, Apr. 2020.
  12. N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, and M. Di Renzo, “Safeguarding 5G wireless communication networks using physical layer security,” IEEE Commun. Mag., vol. 53, no. 4, pp. 20–27, Apr. 2015.
  13. Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, and X. Gao, “A survey of physical layer security techniques for 5G wireless networks and challenges ahead,” IEEE J. Sel. Areas Commun., vol. 36, no. 4, pp. 679–695, Apr. 2018.
  14. L. Lv, Z. Ding, Q. Ni, and J. Chen, “Secure MISO-NOMA transmission with artificial noise,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6700–6705, Jul. 2018.
  15. Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo, “Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1656–1672, Mar. 2017.
  16. S. Huang, M. Xiao, and H. V. Poor, “On the physical layer security of millimeter wave NOMA networks,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 697–11 711, Oct. 2020.
  17. C. Gong, X. Yue, Z. Zhang, X. Wang, and X. Dai, “Enhancing physical layer security with artificial noise in large-scale NOMA networks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2349–2361, Mar. 2021.
  18. D. Li, Y. Cao, Z. Yang, Y. Chen, S. Zhang, N. Zhao, and Z. Ding, “Secrecy analysis in NOMA full-duplex relaying networks with artificial jamming,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8781–8794, Sep. 2021.
  19. Z. Ding, Z. Zhao, M. Peng, and H. V. Poor, “On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming,” IEEE Trans. Commun., vol. 65, no. 7, pp. 3151–3163, Jul. 2017.
  20. X. Yue, Y. Liu, Y. Yao, X. Li, R. Liu, and A. Nallanathan, “Secure communications in a unified non-orthogonal multiple access framework,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2163–2178, Mar. 2020.
  21. B. Su, W. Yu, H. Liu, A. Chorti, and H. V. Poor, “Secure transmission design for cooperative NOMA in the presence of internal eavesdropping,” IEEE Wireless Commun. Lett., to appear in 2022.
  22. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
  23. ——, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  24. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  25. C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan, M. Chen, M. Di Renzo, Y. Hao, J. Wang, A. L. Swindlehurst, X. You, and L. Hanzo, “Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions,” IEEE Commun. Mag., vol. 59, no. 6, pp. 14–20, Jun. 2021.
  26. Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
  27. T. Van Chien, L. T. Tu, S. Chatzinotas, and B. Ottersten, “Coverage probability and ergodic capacity of intelligent reflecting surface-enhanced communication systems,” IEEE Commun. Lett., vol. 25, no. 1, pp. 69–73, 2021.
  28. Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelligent reflecting surface aided communication systems,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2464–2468, Nov. 2020.
  29. S. Zhou, W. Xu, K. Wang, M. Di Renzo, and M.-S. Alouini, “Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1366–1369, Sep. 2020.
  30. J. Lyu and R. Zhang, “Spatial throughput characterization for intelligent reflecting surface aided multiuser system,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 834–838, Jun. 2020.
  31. L. Yang, Y. Yang, D. B. d. Costa, and I. Trigui, “Outage probability and capacity scaling law of multiple RIS-aided networks,” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 256–260, Feb. 2021.
  32. B. Zheng, Q. Wu, and R. Zhang, “Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?” IEEE Commun. Lett., vol. 24, no. 4, pp. 753–757, Apr. 2020.
  33. J. Zuo, Y. Liu, Z. Qin, and N. Al-Dhahir, “Resource allocation in intelligent reflecting surface assisted NOMA systems,” IEEE Trans. Commun., vol. 68, no. 11, pp. 7170–7183, Nov. 2020.
  34. Y. Guo, Z. Qin, Y. Liu, and N. Al-Dhahir, “Intelligent reflecting surface aided multiple access over fading channels,” IEEE Trans. Commun., vol. 69, no. 3, pp. 2015–2027, Mar. 2021.
  35. B. Tahir, S. Schwarz, and M. Rupp, “Analysis of uplink IRS-assisted NOMA under Nakagami-m fading via moments matching,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 624–628, Mar. 2021.
  36. Y. Cheng, K. H. Li, Y. Liu, K. C. Teh, and H. Vincent Poor, “Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3988–4000, Jun. 2021.
  37. Z. Ding, R. Schober, and H. V. Poor, “On the impact of phase shifting designs on IRS-NOMA,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1596–1600, Oct. 2020.
  38. Z. Ding and H. Vincent Poor, “A simple design of IRS-NOMA transmission,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1119–1123, May 2020.
  39. X. Yue and Y. Liu, “Performance analysis of intelligent reflecting surface assisted NOMA networks,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2623–2636, Apr. 2022.
  40. Z. Sun and Y. Jing, “On the performance of multi-antenna IRS-assisted NOMA networks with continuous and discrete IRS phase shifting,” IEEE Trans. Wireless Commun., To appear in 2022.
  41. Y. Cheng, K. H. Li, Y. Liu, K. C. Teh, and G. K. Karagiannidis, “Non-orthogonal multiple access (NOMA) with multiple intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7184–7195, Nov. 2021.
  42. M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via intelligent reflecting surface,” IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1410–1414, Oct. 2019.
  43. X. Yu, D. Xu, and R. Schober, “Enabling secure wireless communications via intelligent reflecting surfaces,” in IEEE Proc. of Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.
  44. L. Dong and H.-M. Wang, “Enhancing secure MIMO transmission via intelligent reflecting surface,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7543–7556, Nov. 2020.
  45. X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
  46. Z. Zhang, L. Lv, Q. Wu, H. Deng, and J. Chen, “Robust and secure communications in intelligent reflecting surface assisted NOMA networks,” IEEE Commun. Lett., vol. 25, no. 3, pp. 739–743, Mar. 2021.
  47. Z. Zhang, J. Chen, Q. Wu, Y. Liu, L. Lv, and X. Su, “Securing NOMA networks by exploiting intelligent reflecting surface,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1096–1111, Feb. 2022.
  48. Y. Feng, J. Chen, X. Xue, K. Wu, Y. Zhou, and L. Yang, “Max-min fair beamforming for IRS-aided secure NOMA systems,” IEEE Commun. Lett., vol. 26, no. 2, pp. 234–238, Feb. 2022.
  49. L. Yang, J. Yang, W. Xie, M. O. Hasna, T. Tsiftsis, and M. D. Renzo, “Secrecy performance analysis of RIS-aided wireless communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12 296–12 300, Oct. 2020.
  50. C. Gong, X. Yue, X. Wang, X. Dai, R. Zou, and M. Essaaidi, “Intelligent reflecting surface aided secure communications for NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2761–2773, Mar. 2022.
  51. Y. Han, N. Li, Y. Liu, T. Zhang, and X. Tao, “Artificial noise aided secure NOMA communications in STAR-RIS networks,” IEEE Wireless Commun. Lett., vol. 11, no. 6, pp. 1191–1195, Jun. 2022.
  52. Z. Zhang, J. Chen, Y. Liu, Q. Wu, B. He, and L. Yang, “On the secrecy design of STAR-RIS assisted uplink NOMA networks,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 11 207–11 221, Dec. 2022.
  53. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. & Appl., vol. 3, no. 10, pp. e218–e218, Oct. 2014.
  54. B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface assisted multi-user OFDMA: Channel estimation and training design,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8315–8329, Dec. 2020.
  55. B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, 2019.
  56. C. You, B. Zheng, and R. Zhang, “Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2604–2620, Nov. 2020.
  57. Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607–6620, Oct. 2020.
  58. I. Gradštejn and I. M. Ryžik, “Table of integrals, series, and products, 6th ed,” 2000.
  59. Z. Tang, T. Hou, Y. Liu, J. Zhang, and L. Hanzo, “Physical layer security of intelligent reflective surface aided NOMA networks,” IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7821–7834, Jul. 2022.
  60. C. Zhong and Z. Zhang, “Non-orthogonal multiple access with cooperative full-duplex relaying,” IEEE Commun. Lett., vol. 20, no. 12, pp. 2478–2481, Dec. 2016.
  61. A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying protocols for wireless energy harvesting and information processing,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3622–3636, Jul. 2013.
  62. W. Shi, J. Xu, W. Xu, M. Di Renzo, and C. Zhao, “Secure outage analysis of RIS-assisted communications with discrete phase control,” IEEE Trans. Veh. Technol., Nov. 2022.
  63. Y. Feng, Z. Yang, W.-P. Zhu, Q. Li, and B. Lv, “Robust cooperative secure beamforming for simultaneous wireless information and power transfer in amplify-and-forward relay networks,” IEEE Trans. Veh. Technol., vol. 66, no. 3, pp. 2354–2366, Mar. 2016.
  64. Y. Zou, “Physical-layer security for spectrum sharing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1319–1329, Feb. 2016.
  65. H. Liu, H. Ding, L. Xiang, J. Yuan, and L. Zheng, “Outage and BER performance analysis of cascade channel in relay networks,” Procedia Comput. Sci., vol. 34, pp. 23–30, Aug. 2014.
  66. F. Fang, Y. Xu, Q.-V. Pham, and Z. Ding, “Energy-efficient design of IRS-NOMA networks,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14 088–14 092, Nov. 2020.
Citations (28)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com