Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PyroTrack: Belief-Based Deep Reinforcement Learning Path Planning for Aerial Wildfire Monitoring in Partially Observable Environments (2403.11095v1)

Published 17 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Motivated by agility, 3D mobility, and low-risk operation compared to human-operated management systems of autonomous unmanned aerial vehicles (UAVs), this work studies UAV-based active wildfire monitoring where a UAV detects fire incidents in remote areas and tracks the fire frontline. A UAV path planning solution is proposed considering realistic wildfire management missions, where a single low-altitude drone with limited power and flight time is available. Noting the limited field of view of commercial low-altitude UAVs, the problem formulates as a partially observable Markov decision process (POMDP), in which wildfire progression outside the field of view causes inaccurate state representation that prevents the UAV from finding the optimal path to track the fire front in limited time. Common deep reinforcement learning (DRL)-based trajectory planning solutions require diverse drone-recorded wildfire data to generalize pre-trained models to real-time systems, which is not currently available at a diverse and standard scale. To narrow down the gap caused by partial observability in the space of possible policies, a belief-based state representation with broad, extensive simulated data is proposed where the beliefs (i.e., ignition probabilities of different grid areas) are updated using a Bayesian framework for the cells within the field of view. The performance of the proposed solution in terms of the ratio of detected fire cells and monitored ignited area (MIA) is evaluated in a complex fire scenario with multiple rapidly growing fire batches, indicating that the belief state representation outperforms the observation state representation both in fire coverage and the distance to fire frontline.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube