Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RobustSentEmbed: Robust Sentence Embeddings Using Adversarial Self-Supervised Contrastive Learning (2403.11082v1)

Published 17 Mar 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Pre-trained LLMs (PLMs) have consistently demonstrated outstanding performance across a diverse spectrum of natural language processing tasks. Nevertheless, despite their success with unseen data, current PLM-based representations often exhibit poor robustness in adversarial settings. In this paper, we introduce RobustSentEmbed, a self-supervised sentence embedding framework designed to improve both generalization and robustness in diverse text representation tasks and against a diverse set of adversarial attacks. Through the generation of high-risk adversarial perturbations and their utilization in a novel objective function, RobustSentEmbed adeptly learns high-quality and robust sentence embeddings. Our experiments confirm the superiority of RobustSentEmbed over state-of-the-art representations. Specifically, Our framework achieves a significant reduction in the success rate of various adversarial attacks, notably reducing the BERTAttack success rate by almost half (from 75.51\% to 38.81\%). The framework also yields improvements of 1.59\% and 0.23\% in semantic textual similarity tasks and various transfer tasks, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube