Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Algorithms for Complexes of Persistence Modules with Applications (2403.10958v1)

Published 16 Mar 2024 in math.AT, cs.CG, and math.AC

Abstract: We extend the persistence algorithm, viewed as an algorithm computing the homology of a complex of free persistence or graded modules, to complexes of modules that are not free. We replace persistence modules by their presentations and develop an efficient algorithm to compute the homology of a complex of presentations. To deal with inputs that are not given in terms of presentations, we give an efficient algorithm to compute a presentation of a morphism of persistence modules. This allows us to compute persistent (co)homology of instances giving rise to complexes of non-free modules. Our methods lead to a new efficient algorithm for computing the persistent homology of simplicial towers and they enable efficient algorithms to compute the persistent homology of cosheaves over simplicial towers and cohomology of persistent sheaves on simplicial complexes. We also show that we can compute the cohomology of persistent sheaves over arbitrary finite posets by reducing the computation to a computation over simplicial complexes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.
  2. Sheaf neural networks with connection laplacians. In Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, volume 196 of Proceedings of Machine Learning Research, pages 28–36. PMLR, 25 Feb–22 Jul 2022.
  3. Level-sets persistence and sheaf theory. CoRR, abs/1907.09759, 2019. arXiv:1907.09759.
  4. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. In Advances in Neural Information Processing Systems, volume 35, pages 18527–18541. Curran Associates, Inc., 2022.
  5. Discrete microlocal morse theory, 2022. arXiv:2209.14993.
  6. Sheaf-theoretic stratification learning from geometric and topological perspectives. Discrete and Computational Geometry, 65, 2021. doi:10.1007/s00454-020-00206-y.
  7. The representation theorem of persistence revisited and generalized. Journal of Applied and Computational Topology, 2(1-2):1–31, 2018. doi:10.1007/s41468-018-0015-3.
  8. Justin Curry. Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania, 2014. arXiv:1303.3255.
  9. Discrete morse theory for computing cellular sheaf cohomology. Foundations of Computational Mathematics, 16, 2013. doi:10.1007/s10208-015-9266-8.
  10. Convergence of leray cosheaves for decorated mapper graphs, 2023. arXiv:2303.00130.
  11. Computing topological persistence for simplicial maps. In Proc. 13th Annu. Sympos. Comput. Geom. (SoCG), pages 345:345–345:354, 2014.
  12. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511–533, Nov 2002.
  13. Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972. doi:10.1007/BF01298413.
  14. Robert Ghrist. Elementary Applied Topology. CreateSpace Independent Publishing Platform, 2014.
  15. Applications of sheaf cohomology and exact sequences on network codings. 2011. URL: https://www2.math.upenn.edu/~ghrist/preprints/networkcodingshort.pdf.
  16. Sheaf neural networks, 2020. arXiv:2012.06333.
  17. Opinion dynamics on discourse sheaves. SIAM Journal on Applied Mathematics, 81:2033–2060, 2021. doi:10.1137/20M1341088.
  18. Persistent homology and microlocal sheaf theory. Journal of Applied and Computational Topology, 2, 2018. doi:10.1007/s41468-018-0019-z.
  19. Barcodes of towers and a streaming algorithm for persistent homology. In 33rd International Symposium on Computational Geometry, SoCG 2017, volume 77 of LIPIcs, pages 57:1–57:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
  20. S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2005.
  21. nLab authors. adjoint functor. https://ncatlab.org/nlab/show/adjoint+functor, July 2023. Revision 134.
  22. Michael Robinson. Understanding networks and their behaviors using sheaf theory. 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, 2013. doi:10.1109/GlobalSIP.2013.6737040.
  23. Michael Robinson. Topological Signal Processing. Mathematical Engineering. Springer Berlin Heidelberg, 2014.
  24. Florian Russold. Persistent sheaf cohomology, 2022. arXiv:2204.13446.
  25. Álvaro Torras-Casas. Distributing persistent homology via spectral sequences. Discrete & Computational Geometry, pages 1–40, 2023.
  26. Persistent topological Laplacian analysis of SARS-CoV-2 variants. J Comput Biophys Chem., 01 2023.
  27. Persistent sheaf Laplacians, 2022. arXiv:2112.10906.
  28. Persistence by parts: Multiscale feature detection via distributed persistent homology, 2020. arXiv:2001.01623.
  29. Computing persistent homology. Discrete and Computational Geometry, 33:249–274, 2005. doi:10.1007/s00454-004-1146-y.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com