Papers
Topics
Authors
Recent
2000 character limit reached

Graph Regularized NMF with L20-norm for Unsupervised Feature Learning (2403.10910v1)

Published 16 Mar 2024 in cs.LG

Abstract: Nonnegative Matrix Factorization (NMF) is a widely applied technique in the fields of machine learning and data mining. Graph Regularized Non-negative Matrix Factorization (GNMF) is an extension of NMF that incorporates graph regularization constraints. GNMF has demonstrated exceptional performance in clustering and dimensionality reduction, effectively discovering inherent low-dimensional structures embedded within high-dimensional spaces. However, the sensitivity of GNMF to noise limits its stability and robustness in practical applications. In order to enhance feature sparsity and mitigate the impact of noise while mining row sparsity patterns in the data for effective feature selection, we introduce the $\ell_{2,0}$-norm constraint as the sparsity constraints for GNMF. We propose an unsupervised feature learning framework based on GNMF_$\ell_{20}$ and devise an algorithm based on PALM and its accelerated version to address this problem. Additionally, we establish the convergence of the proposed algorithms and validate the efficacy and superiority of our approach through experiments conducted on both simulated and real image data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.