Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Graph Regularized NMF with L20-norm for Unsupervised Feature Learning (2403.10910v1)

Published 16 Mar 2024 in cs.LG

Abstract: Nonnegative Matrix Factorization (NMF) is a widely applied technique in the fields of machine learning and data mining. Graph Regularized Non-negative Matrix Factorization (GNMF) is an extension of NMF that incorporates graph regularization constraints. GNMF has demonstrated exceptional performance in clustering and dimensionality reduction, effectively discovering inherent low-dimensional structures embedded within high-dimensional spaces. However, the sensitivity of GNMF to noise limits its stability and robustness in practical applications. In order to enhance feature sparsity and mitigate the impact of noise while mining row sparsity patterns in the data for effective feature selection, we introduce the $\ell_{2,0}$-norm constraint as the sparsity constraints for GNMF. We propose an unsupervised feature learning framework based on GNMF_$\ell_{20}$ and devise an algorithm based on PALM and its accelerated version to address this problem. Additionally, we establish the convergence of the proposed algorithms and validate the efficacy and superiority of our approach through experiments conducted on both simulated and real image data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets