Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Robustness and Diversity: Continual Learning in Dialog Generation with Text-Mixup and Batch Nuclear-Norm Maximization (2403.10894v1)

Published 16 Mar 2024 in cs.CL

Abstract: In our dynamic world where data arrives in a continuous stream, continual learning enables us to incrementally add new tasks/domains without the need to retrain from scratch. A major challenge in continual learning of LLM is catastrophic forgetting, the tendency of models to forget knowledge from previously trained tasks/domains when training on new ones. This paper studies dialog generation under the continual learning setting. We propose a novel method that 1) uses \textit{Text-Mixup} as data augmentation to avoid model overfitting on replay memory and 2) leverages Batch-Nuclear Norm Maximization (BNNM) to alleviate the problem of mode collapse. Experiments on a $37$-domain task-oriented dialog dataset and DailyDialog (a $10$-domain chitchat dataset) demonstrate that our proposed approach outperforms the state-of-the-art in continual learning.

Summary

We haven't generated a summary for this paper yet.