Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probabilistic World Modeling with Asymmetric Distance Measure (2403.10875v1)

Published 16 Mar 2024 in cs.LG

Abstract: Representation learning is a fundamental task in machine learning, aiming at uncovering structures from data to facilitate subsequent tasks. However, what is a good representation for planning and reasoning in a stochastic world remains an open problem. In this work, we posit that learning a distance function is essential to allow planning and reasoning in the representation space. We show that a geometric abstraction of the probabilistic world dynamics can be embedded into the representation space through asymmetric contrastive learning. Unlike previous approaches that focus on learning mutual similarity or compatibility measures, we instead learn an asymmetric similarity function that reflects the state reachability and allows multi-way probabilistic inference. Moreover, by conditioning on a common reference state (e.g. the observer's current state), the learned representation space allows us to discover the geometrically salient states that only a handful of paths can lead through. These states can naturally serve as subgoals to break down long-horizon planning tasks. We evaluate our method in gridworld environments with various layouts and demonstrate its effectiveness in discovering the subgoals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: