Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Chinese Humor Generation: A Study on Two-Part Allegorical Sayings (2403.10781v1)

Published 16 Mar 2024 in cs.CL and cs.AI

Abstract: Humor, a culturally nuanced aspect of human language, poses challenges for computational understanding and generation, especially in Chinese humor, which remains relatively unexplored in the NLP community. This paper investigates the capability of state-of-the-art LLMs to comprehend and generate Chinese humor, specifically focusing on training them to create allegorical sayings. We employ two prominent training methods: fine-tuning a medium-sized LLM and prompting a large one. Our novel fine-tuning approach incorporates fused Pinyin embeddings to consider homophones and employs contrastive learning with synthetic hard negatives to distinguish humor elements. Human-annotated results show that these models can generate humorous allegorical sayings, with prompting proving to be a practical and effective method. However, there is still room for improvement in generating allegorical sayings that match human creativity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.