Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Segment Any Object Model (SAOM): Real-to-Simulation Fine-Tuning Strategy for Multi-Class Multi-Instance Segmentation (2403.10780v1)

Published 16 Mar 2024 in cs.CV and cs.AI

Abstract: Multi-class multi-instance segmentation is the task of identifying masks for multiple object classes and multiple instances of the same class within an image. The foundational Segment Anything Model (SAM) is designed for promptable multi-class multi-instance segmentation but tends to output part or sub-part masks in the "everything" mode for various real-world applications. Whole object segmentation masks play a crucial role for indoor scene understanding, especially in robotics applications. We propose a new domain invariant Real-to-Simulation (Real-Sim) fine-tuning strategy for SAM. We use object images and ground truth data collected from Ai2Thor simulator during fine-tuning (real-to-sim). To allow our Segment Any Object Model (SAOM) to work in the "everything" mode, we propose the novel nearest neighbour assignment method, updating point embeddings for each ground-truth mask. SAOM is evaluated on our own dataset collected from Ai2Thor simulator. SAOM significantly improves on SAM, with a 28% increase in mIoU and a 25% increase in mAcc for 54 frequently-seen indoor object classes. Moreover, our Real-to-Simulation fine-tuning strategy demonstrates promising generalization performance in real environments without being trained on the real-world data (sim-to-real). The dataset and the code will be released after publication.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.