Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PALM: Pushing Adaptive Learning Rate Mechanisms for Continual Test-Time Adaptation (2403.10650v4)

Published 15 Mar 2024 in cs.CV and cs.LG

Abstract: Real-world vision models in dynamic environments face rapid shifts in domain distributions, leading to decreased recognition performance. Using unlabeled test data, continuous test-time adaptation (CTTA) directly adjusts a pre-trained source discriminative model to these changing domains. A highly effective CTTA method involves applying layer-wise adaptive learning rates for selectively adapting pre-trained layers. However, it suffers from the poor estimation of domain shift and the inaccuracies arising from the pseudo-labels. This work aims to overcome these limitations by identifying layers for adaptation via quantifying model prediction uncertainty without relying on pseudo-labels. We utilize the magnitude of gradients as a metric, calculated by backpropagating the KL divergence between the softmax output and a uniform distribution, to select layers for further adaptation. Subsequently, for the parameters exclusively belonging to these selected layers, with the remaining ones frozen, we evaluate their sensitivity to approximate the domain shift and adjust their learning rates accordingly. We conduct extensive image classification experiments on CIFAR-10C, CIFAR-100C, and ImageNet-C, demonstrating the superior efficacy of our method compared to prior approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: