Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Concurrent Multi-Robot Coverage Path Planning (2403.10460v1)

Published 15 Mar 2024 in cs.RO and cs.AI

Abstract: Recently, centralized receding horizon online multi-robot coverage path planning algorithms have shown remarkable scalability in thoroughly exploring large, complex, unknown workspaces with many robots. In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute, and subsequently, when the robots with new or outstanding paths execute to reach respective goals, path planning does not occur for those robots yet to get new paths, leading to wastage of both the robotic and the computation resources. As a remedy, we propose a centralized algorithm that is not horizon-based. It plans paths at any time for a subset of robots with no paths, i.e., who have reached their previously assigned goals, while the rest execute their outstanding paths, thereby enabling concurrent planning and execution. We formally prove that the proposed algorithm ensures complete coverage of an unknown workspace and analyze its time complexity. To demonstrate scalability, we evaluate our algorithm to cover eight large $2$D grid benchmark workspaces with up to 512 aerial and ground robots, respectively. A comparison with a state-of-the-art horizon-based algorithm shows its superiority in completing the coverage with up to 1.6x speedup. For validation, we perform ROS + Gazebo simulations in six 2D grid benchmark workspaces with 10 quadcopters and TurtleBots, respectively. We also successfully conducted one outdoor experiment with three quadcopters and one indoor with two TurtleBots.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. R. Bormann, F. Jordan, J. Hampp, and M. Hägele, “Indoor coverage path planning: Survey, implementation, analysis,” in ICRA, 2018, pp. 1718–1725.
  2. W. Jing, J. Polden, C. F. Goh, M. Rajaraman, W. Lin, and K. Shimada, “Sampling-based coverage motion planning for industrial inspection application with redundant robotic system,” in IROS, 2017, pp. 5211–5218.
  3. A. Barrientos, J. Colorado, J. del Cerro, A. Martinez, C. Rossi, D. Sanz, and J. Valente, “Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots,” J. Field Robotics, vol. 28, no. 5, pp. 667–689, 2011.
  4. N. Karapetyan, J. Moulton, J. S. Lewis, A. Q. Li, J. M. O’Kane, and I. M. Rekleitis, “Multi-robot dubins coverage with autonomous surface vehicles,” in ICRA, 2018, pp. 2373–2379.
  5. T. M. Cabreira, L. B. Brisolara, and P. R. F. Jr., “Survey on coverage path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4, 2019.
  6. Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas by a mobile robot,” in ICRA, 2001, pp. 1927–1933.
  7. A. Kleiner, R. Baravalle, A. Kolling, P. Pilotti, and M. Munich, “A solution to room-by-room coverage for autonomous cleaning robots,” in IROS, 2017, pp. 5346–5352.
  8. G. Sharma, A. Dutta, and J. Kim, “Optimal online coverage path planning with energy constraints,” in AAMAS, 2019, pp. 1189–1197.
  9. J. Modares, F. Ghanei, N. Mastronarde, and K. Dantu, “UB-ANC planner: Energy efficient coverage path planning with multiple drones,” in ICRA, 2017, pp. 6182–6189.
  10. N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. M. Rekleitis, “Efficient multi-robot coverage of a known environment,” in IROS, 2017, pp. 1846–1852.
  11. I. Vandermeulen, R. Groß, and A. Kolling, “Turn-minimizing multirobot coverage,” in ICRA, 2019, pp. 1014–1020.
  12. G. Hardouin, J. Moras, F. Morbidi, J. Marzat, and E. M. Mouaddib, “Next-best-view planning for surface reconstruction of large-scale 3D environments with multiple uavs,” in IROS, 2020, pp. 1567–1574.
  13. L. Collins, P. Ghassemi, E. T. Esfahani, D. S. Doermann, K. Dantu, and S. Chowdhury, “Scalable coverage path planning of multi-robot teams for monitoring non-convex areas,” in ICRA, 2021, pp. 7393–7399.
  14. J. Tang, C. Sun, and X. Zhang, “Mstc∗∗{}^{\mbox{{${{}_{\ast}}$}}}start_FLOATSUPERSCRIPT start_FLOATSUBSCRIPT ∗ end_FLOATSUBSCRIPT end_FLOATSUPERSCRIPT: Multi-robot coverage path planning under physical constrain,” in ICRA, 2021, pp. 2518–2524.
  15. E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.
  16. Y. Bouzid, Y. Bestaoui, and H. Siguerdidjane, “Quadrotor-uav optimal coverage path planning in cluttered environment with a limited onboard energy,” in IROS, 2017, pp. 979–984.
  17. X. Chen, T. M. Tucker, T. R. Kurfess, and R. W. Vuduc, “Adaptive deep path: Efficient coverage of a known environment under various configurations,” in IROS, 2019, pp. 3549–3556.
  18. B. Yamauchi, “Frontier-based exploration using multiple robots,” in AGENTS, K. P. Sycara and M. J. Wooldridge, Eds., 1998, pp. 47–53.
  19. N. Hazon, F. Mieli, and G. A. Kaminka, “Towards robust on-line multi-robot coverage,” in ICRA, 2006, pp. 1710–1715.
  20. A. Özdemir, M. Gauci, A. Kolling, M. D. Hall, and R. Groß, “Spatial coverage without computation,” in ICRA, 2019, pp. 9674–9680.
  21. M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen, N. Khedekar, and K. Alexis, “Motion primitives-based path planning for fast and agile exploration using aerial robots,” in ICRA, 2020, pp. 179–185.
  22. S. N. Das and I. Saha, “Rhocop: Receding horizon multi-robot coverage,” in ICCPS, 2018.
  23. H. H. Viet, V. Dang, S. Y. Choi, and T. Chung, “BoB: an online coverage approach for multi-robot systems,” Appl. Intell., vol. 42, no. 2, pp. 157–173, 2015.
  24. A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon “next-best-view” planner for 3D exploration,” in ICRA, 2016, pp. 1462–1468.
  25. R. Mitra and I. Saha, “Scalable online coverage path planning for multi-robot systems,” in IROS, 2022, pp. 10 102–10 109.
  26. ——, “Online on-demand multi-robot coverage path planning,” CoRR, vol. abs/2303.00047, 2023, accepted at ICRA 2024. [Online]. Available: https://arxiv.org/abs/2303.00047
  27. TurtleBot. [Online]. Available: https://www.turtlebot.com/
  28. H. W. Kuhn, “The hungarian method for the assignment problem,” Nav. Res. Logist., vol. 2, no. 1-2, pp. 83–97, 1955.
  29. Robot Operating System. [Online]. Available: https://www.ros.org/
  30. R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak, “Multi-agent pathfinding: Definitions, variants, and benchmarks,” Symposium on Combinatorial Search (SoCS), pp. 151–158, 2019.
  31. Gazebo. [Online]. Available: https://www.gazebosim.org/
  32. Vicon Motion Capture Systems. [Online]. Available: https://www.vicon.com/
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ratijit Mitra (2 papers)
  2. Indranil Saha (18 papers)

Summary

We haven't generated a summary for this paper yet.