On the Use of Cramer-Rao Lower Bound for Least-Variance Circuit Parameters Identification of Li-ion Cells (2403.10435v1)
Abstract: Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs) are widely used to characterize the impedance and estimate parameters of electrochemical systems such as batteries. We use a generic ECM with ten parameters grouped to model different frequency regions of the Li-ion cell's impedance spectrum. We derive a noise covariance matrix from the measurement model and use it to assign weights for the fitting technique. The paper presents two formulations of the parameters identification problem. Using the properties of the ECM EIS spectra, we propose a method to initialize ECM parameters for the Complex Non-linear Least Squares (CNLS) technique. The paper proposes a novel algorithm for designing the EIS experiments by applying the theory on Cramer-Rao Lower Bound (CRLB) and Fisher Information Matrix (FIM) to the identification problem. We show that contributions to the FIM elements strongly depend on the frequencies at which EIS is performed. Hence, the algorithm aims to adjust frequencies such that the most information about parameters is collected. This is done by minimizing the highest variance of ECM parameters defined by CRLB. Results of a numerical experiment show that the estimator is efficient, and frequency adjustment leads to more accurate ECM parameters' identification.
- S. Zhao, S. R. Duncan, and D. A. Howey, “Observability Analysis and State Estimation of Lithium-Ion Batteries in the Presence of Sensor Biases,” IEEE Transactions on Control Systems Technology, vol. 25, pp. 326–333, Jan. 2017. Conference Name: IEEE Transactions on Control Systems Technology.
- M. Koseoglou, E. Tsioumas, D. Papagiannis, N. Jabbour, and C. Mademlis, “A Novel On-Board Electrochemical Impedance Spectroscopy System for Real-Time Battery Impedance Estimation,” IEEE Transactions on Power Electronics, vol. 36, pp. 10776–10787, Sept. 2021. Conference Name: IEEE Transactions on Power Electronics.
- S. M. M. Alavi, A. Mahdi, S. J. Payne, and D. A. Howey, “Identifiability of Generalized Randles Circuit Models,” IEEE Transactions on Control Systems Technology, vol. 25, pp. 2112–2120, Nov. 2017. Conference Name: IEEE Transactions on Control Systems Technology.
- S. M. M. Alavi, C. R. Birkl, and D. A. Howey, “Time-domain fitting of battery electrochemical impedance models,” Journal of Power Sources, vol. 288, pp. 345–352, Aug. 2015.
- P. Iurilli, C. Brivio, and V. Wood, “On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review,” Journal of Power Sources, vol. 505, p. 229860, Sept. 2021.
- J. R. Macdonald and J. A. Garber, “Analysis of Impedance and Admittance Data for Solids and Liquids,” Journal of The Electrochemical Society, vol. 124, p. 1022, July 1977. Publisher: IOP Publishing.
- M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy. Hoboken, New Jersey: John Wiley & Sons, Inc., 2017. OCLC: 1104176375.
- J. Nocedal and S. J. Wright, Numerical optimization. Springer series in operations research, New York: Springer, 2nd ed ed., 2006. OCLC: ocm68629100.
- K. Geuten, T. Massingham, P. Darius, E. Smets, and N. Goldman, “Experimental Design Criteria in Phylogenetics: Where to Add Taxa,” Systematic biology, vol. 56, pp. 609–22, Sept. 2007.
- P. Goos and B. Jones, Optimal design of experiments: a case study approach. Hoboken, N.J: Wiley, 2011.
- A. Pozzi, G. Ciaramella, K. Gopalakrishnan, S. Volkwein, and D. M. Raimondo, “Optimal Design of Experiment for Parameter Estimation of a Single Particle Model for Lithiumion Batteries,” in 2018 IEEE Conference on Decision and Control (CDC), (Miami Beach, FL), pp. 6482–6487, IEEE, Dec. 2018.
- A. P. Schmidt, M. Bitzer, A. W. Imre, and L. Guzzella, “Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell,” Journal of Power Sources, vol. 195, pp. 5071–5080, Aug. 2010.
- P. Pillai, S. Sundaresan, K. R. Pattipati, and B. Balasingam, “Optimizing Current Profiles for Efficient Online Estimation of Battery Equivalent Circuit Model Parameters Based on Cramer–Rao Lower Bound,” Energies, vol. 15, p. 8441, Nov. 2022.
- M. J. Rothenberger, D. J. Docimo, M. Ghanaatpishe, and H. K. Fathy, “Genetic optimization and experimental validation of a test cycle that maximizes parameter identifiability for a Li-ion equivalent-circuit battery model,” Journal of Energy Storage, vol. 4, pp. 156–166, Dec. 2015.
- X. Du, J. Meng, Y. Zhang, X. Huang, S. Wang, P. Liu, and T. Liu, “An Information Appraisal Procedure: Endows Reliable Online Parameter Identification to Lithium-Ion Battery Model,” IEEE Transactions on Industrial Electronics, vol. 69, pp. 5889–5899, June 2022. Conference Name: IEEE Transactions on Industrial Electronics.
- J. R. Macdonald and L. D. Potter, “A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations,” Solid State Ionics, vol. 24, pp. 61–79, June 1987.
- M. Abaspour, K. R. Pattipati, B. Shahrrava, and B. Balasingam, “Robust Approach to Battery Equivalent-Circuit-Model Parameter Extraction Using Electrochemical Impedance Spectroscopy,” Energies, vol. 15, p. 9251, Dec. 2022.
- B. Ospina Agudelo, W. Zamboni, E. Monmasson, and G. Spagnuolo, “Identification of battery circuit model from EIS data,” (Saint Pierre d’Oléron, France), hal-02915697, June 2019.
- U. Tröltzsch, O. Kanoun, and H.-R. Tränkler, “Characterizing aging effects of lithium ion batteries by impedance spectroscopy,” Electrochimica Acta, vol. 51, pp. 1664–1672, Jan. 2006.
- S. M. R. Islam, S.-Y. Park, and B. Balasingam, “Unification of Internal Resistance Estimation Methods for Li-Ion Batteries Using Hysteresis-Free Equivalent Circuit Models,” Batteries, vol. 6, p. 32, June 2020.
- Y. Wu, S. Sundaresan, and B. Balasingam, “Battery Parameter Analysis through Electrochemical Impedance Spectroscopy at Different State of Charge Levels,” Journal of Low Power Electronics and Applications, vol. 13, p. 29, Apr. 2023.
- S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nature Reviews Methods Primers, vol. 1, p. 41, June 2021.
- D. Lerro and Y. Bar-Shalom, “Tracking with debiased consistent converted measurements versus EKF,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, pp. 1015–1022, July 1993. Conference Name: IEEE Transactions on Aerospace and Electronic Systems.
- M. Paolone, J.-Y. Le Boudec, S. Sarri, and L. Zanni, “Static and recursive PMU-based state estimation processes for transmission and distribution power grids,” in Advances in Power System Modelling, Control and Stability Analysis (Milano, ed.), pp. 189–239, Institution of Engineering and Technology, Sept. 2016.
- S. M. Kay, Fundamentals of statistical signal processing. Prentice Hall signal processing series, Englewood Cliffs, N.J: Prentice-Hall PTR, 1993.
- F. Nielsen, “An Elementary Introduction to Information Geometry,” Entropy (Basel, Switzerland), vol. 22, Aug. 2018.
- A. J. Wilson, “Volume of n-dimensional ellipsoid,” Sciencia Acta Xaveriana, vol. 1, no. 1, pp. 101–106, 2009.