Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

End-to-end Adaptive Dynamic Subsampling and Reconstruction for Cardiac MRI (2403.10346v2)

Published 15 Mar 2024 in eess.IV, cs.CV, and physics.med-ph

Abstract: $\textbf{Background:}$ Accelerating dynamic MRI is vital for advancing clinical applications and improving patient comfort. Commonly, deep learning (DL) methods for accelerated dynamic MRI reconstruction typically rely on uniformly applying non-adaptive predetermined or random subsampling patterns across all temporal frames of the dynamic acquisition. This approach fails to exploit temporal correlations or optimize subsampling on a case-by-case basis. $\textbf{Purpose:}$ To develop an end-to-end approach for adaptive dynamic MRI subsampling and reconstruction, capable of generating customized sampling patterns maximizing at the same time reconstruction quality. $\textbf{Methods:}$ We introduce the End-to-end Adaptive Dynamic Sampling and Reconstruction (E2E-ADS-Recon) for MRI framework, which integrates an adaptive dynamic sampler (ADS) that adapts the acquisition trajectory to each case for a given acceleration factor with a state-of-the-art dynamic reconstruction network, vSHARP, for reconstructing the adaptively sampled data into a dynamic image. The ADS can produce either frame-specific patterns or unified patterns applied to all temporal frames. E2E-ADS-Recon is evaluated under both frame-specific and unified 1D or 2D sampling settings, using dynamic cine cardiac MRI data and compared with vSHARP models employing standard subsampling trajectories, as well as pipelines where ADS was replaced by parameterized samplers optimized for dataset-specific schemes. $\textbf{Results:}$ E2E-ADS-Recon exhibited superior reconstruction quality, especially at high accelerations, in terms of standard quantitative metrics (SSIM, pSNR, NMSE). $\textbf{Conclusion:}$ The proposed framework improves reconstruction quality, highlighting the importance of case-specific subsampling optimization in dynamic MRI applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.