Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Do Large Language Models Solve ARC Visual Analogies Like People Do? (2403.09734v2)

Published 13 Mar 2024 in cs.CL and cs.AI

Abstract: The Abstraction Reasoning Corpus (ARC) is a visual analogical reasoning test designed for humans and machines (Chollet, 2019). We compared human and LLM performance on a new child-friendly set of ARC items. Results show that both children and adults outperform most LLMs on these tasks. Error analysis revealed a similar "fallback" solution strategy in LLMs and young children, where part of the analogy is simply copied. In addition, we found two other error types, one based on seemingly grasping key concepts (e.g., Inside-Outside) and the other based on simple combinations of analogy input matrices. On the whole, "concept" errors were more common in humans, and "matrix" errors were more common in LLMs. This study sheds new light on LLM reasoning ability and the extent to which we can use error analyses and comparisons with human development to understand how LLMs solve visual analogies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 29 likes.

Upgrade to Pro to view all of the tweets about this paper: