Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Less is More: High-value Data Selection for Visual Instruction Tuning (2403.09559v4)

Published 14 Mar 2024 in cs.CL and cs.CV

Abstract: Visual instruction tuning is the key to building large vision LLMs~(LVLMs), which can greatly improve the task generalization and solving capabilities by learning a mixture of instruction data from diverse visual tasks. Previous work mostly collects multiple existing visual instruction datasets via heuristic ways for training (even more than a million instructions), which may introduce data redundancy and enlarge the training cost. To investigate this issue, we conduct a series of empirical studies, which reveal a significant redundancy within the visual instruction datasets, and show that greatly reducing the amount of instructions from several tasks even do not affect the performance. Based on the findings, we propose a high-value data selection approach TIVE, to eliminate redundancy within the visual instruction data and reduce the training cost. In TIVE, we first estimate the instance influence score on its corresponding task, and the task difficulty score, based on the gradient-based influence functions. Then, we leverage the two kinds of scores to determine the task proportion within the selected visual instruction subset, and select high-value instances for each task, respectively. Experiments on various LVLMs show that our approach using only about 15% data can achieve comparable average performance to the full-data fine-tuned model across eight benchmarks, even surpassing it on four of the benchmarks. Our code and data will be publicly released.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube