Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

B-AVIBench: Towards Evaluating the Robustness of Large Vision-Language Model on Black-box Adversarial Visual-Instructions (2403.09346v2)

Published 14 Mar 2024 in cs.CV and cs.AI

Abstract: Large Vision-LLMs (LVLMs) have shown significant progress in responding well to visual-instructions from users. However, these instructions, encompassing images and text, are susceptible to both intentional and inadvertent attacks. Despite the critical importance of LVLMs' robustness against such threats, current research in this area remains limited. To bridge this gap, we introduce B-AVIBench, a framework designed to analyze the robustness of LVLMs when facing various Black-box Adversarial Visual-Instructions (B-AVIs), including four types of image-based B-AVIs, ten types of text-based B-AVIs, and nine types of content bias B-AVIs (such as gender, violence, cultural, and racial biases, among others). We generate 316K B-AVIs encompassing five categories of multimodal capabilities (ten tasks) and content bias. We then conduct a comprehensive evaluation involving 14 open-source LVLMs to assess their performance. B-AVIBench also serves as a convenient tool for practitioners to evaluate the robustness of LVLMs against B-AVIs. Our findings and extensive experimental results shed light on the vulnerabilities of LVLMs, and highlight that inherent biases exist even in advanced closed-source LVLMs like GeminiProVision and GPT-4V. This underscores the importance of enhancing the robustness, security, and fairness of LVLMs. The source code and benchmark are available at https://github.com/zhanghao5201/B-AVIBench.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets