Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Annotation Free Semantic Segmentation with Vision Foundation Models (2403.09307v3)

Published 14 Mar 2024 in cs.CV

Abstract: Semantic Segmentation is one of the most challenging vision tasks, usually requiring large amounts of training data with expensive pixel level annotations. With the success of foundation models and especially vision-LLMs, recent works attempt to achieve zeroshot semantic segmentation while requiring either large-scale training or additional image/pixel level annotations. In this work, we generate free annotations for any semantic segmentation dataset using existing foundation models. We use CLIP to detect objects and SAM to generate high quality object masks. Next, we build a lightweight module on top of a self-supervised vision encoder, DinoV2, to align the patch features with a pretrained text encoder for zeroshot semantic segmentation. Our approach can bring language-based semantics to any pretrained vision encoder with minimal training, uses foundation models as the sole source of supervision and generalizes from little training data with no annotation.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.