Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CardioCaps: Attention-based Capsule Network for Class-Imbalanced Echocardiogram Classification (2403.09108v2)

Published 14 Mar 2024 in cs.CV

Abstract: Capsule Neural Networks (CapsNets) is a novel architecture that utilizes vector-wise representations formed by multiple neurons. Specifically, the Dynamic Routing CapsNets (DR-CapsNets) employ an affine matrix and dynamic routing mechanism to train capsules and acquire translation-equivariance properties, enhancing its robustness compared to traditional Convolutional Neural Networks (CNNs). Echocardiograms, which capture moving images of the heart, present unique challenges for traditional image classification methods. In this paper, we explore the potential of DR-CapsNets and propose CardioCaps, a novel attention-based DR-CapsNet architecture for class-imbalanced echocardiogram classification. CardioCaps comprises two key components: a weighted margin loss incorporating a regression auxiliary loss and an attention mechanism. First, the weighted margin loss prioritizes positive cases, supplemented by an auxiliary loss function based on the Ejection Fraction (EF) regression task, a crucial measure of cardiac function. This approach enhances the model's resilience in the face of class imbalance. Second, recognizing the quadratic complexity of dynamic routing leading to training inefficiencies, we adopt the attention mechanism as a more computationally efficient alternative. Our results demonstrate that CardioCaps surpasses traditional machine learning baseline methods, including Logistic Regression, Random Forest, and XGBoost with sampling methods and a class weight matrix. Furthermore, CardioCaps outperforms other deep learning baseline methods such as CNNs, ResNets, U-Nets, and ViTs, as well as advanced CapsNets methods such as EM-CapsNets and Efficient-CapsNets. Notably, our model demonstrates robustness to class imbalance, achieving high precision even in datasets with a substantial proportion of negative cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. L. Lee and J. M. DeCara, “Point-of-care ultrasound,” Current Cardiology Reports, vol. 22, pp. 1–10, 2020.
  2. Y. Baribeau, A. Sharkey, O. Chaudhary, S. Krumm, H. Fatima, F. Mahmood, and R. Matyal, “Handheld point-of-care ultrasound probes: the new generation of pocus,” Journal of cardiothoracic and vascular anesthesia, vol. 34, no. 11, pp. 3139–3145, 2020.
  3. S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Advances in neural information processing systems, vol. 30, 2017.
  4. T. Kavitha, P. P. Mathai, C. Karthikeyan, M. Ashok, R. Kohar, J. Avanija, and S. Neelakandan, “Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images,” Interdisciplinary Sciences: Computational Life Sciences, pp. 1–17, 2021.
  5. H. Kang, T. Vu, and C. D. Yoo, “Learning imbalanced datasets with maximum margin loss,” in 2021 IEEE International Conference on Image Processing (ICIP), pp. 1269–1273, 2021.
  6. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.
  7. J. Gu, V. Tresp, and H. Hu, “Capsule network is not more robust than convolutional network,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 14304–14312, IEEE Computer Society, jun 2021.
  8. D. Ouyang, B. He, A. Ghorbani, N. Yuan, J. Ebinger, C. P. Langlotz, P. A. Heidenreich, R. A. Harrington, D. H. Liang, E. A. Ashley, et al., “Video-based ai for beat-to-beat assessment of cardiac function,” Nature, vol. 580, no. 7802, pp. 252–256, 2020.
  9. L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001.
  10. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 785–794, Association for Computing Machinery, 2016.
  11. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
  13. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234–241, Springer International Publishing, 2015.
  14. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2021.
  15. G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,” in International Conference on Learning Representations, 2018.
  16. V. Mazzia, F. Salvetti, and M. Chiaberge, “Efficient-CapsNet: capsule network with self-attention routing,” Scientific Reports, vol. 11, jul 2021.
  17. M. K. Cahalan, W. Stewart, A. Pearlman, M. Goldman, P. Sears-Rogan, M. Abel, I. Russell, J. Shanewise, C. Troianos, et al., “American society of echocardiography and society of cardiovascular anesthesiologists task force guidelines for training in perioperative echocardiography,” Journal of the American Society of Echocardiography, vol. 15, no. 6, pp. 647–652, 2002.
  18. K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, et al., “Real-time mri-guided right heart catheterization in adults using passive catheters,” European heart journal, vol. 34, no. 5, pp. 380–389, 2013.
  19. I. Scholl, T. Aach, T. M. Deserno, and T. Kuhlen, “Challenges of medical image processing,” Computer science-Research and development, vol. 26, pp. 5–13, 2011.
  20. M. I. Razzak, S. Naz, and A. Zaib, “Deep learning for medical image processing: Overview, challenges and the future,” Classification in BioApps: Automation of Decision Making, pp. 323–350, 2018.
  21. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
  22. Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling,” IEEE access, vol. 8, pp. 4806–4813, 2019.
  23. D. Wang and Q. Liu, “An optimization view on dynamic routing between capsules,” 2018.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: