Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Partial Differential Equations Using Artificial Neural Networks (2403.09001v3)

Published 13 Mar 2024 in math.NA and cs.NA

Abstract: Partial differential equations have a wide range of applications in modeling multiple physical, biological, or social phenomena. Therefore, we need to approximate the solutions of these equations in computationally feasible terms. Nowadays, among the most popular numerical methods for solving partial differential equations in engineering, we encounter the finite difference and finite element methods. An alternative numerical method that has recently gained popularity for numerically solving partial differential equations is the use of artificial neural networks. Artificial neural networks, or neural networks for short, are mathematical structures with universal approximation properties. In addition, thanks to the extraordinary computational development of the last decade, neural networks have become accessible and powerful numerical methods for engineers and researchers. For example, imaging and language processing are applications of neural networks today that show sublime performance inconceivable years ago. This dissertation contributes to the numerical solution of partial differential equations using neural networks with the following two-fold objective: investigate the behavior of neural networks as approximators of solutions of partial differential equations and propose neural-network-based methods for frameworks that are hardly addressable via traditional numerical methods. As novel neural-network-based proposals, we first present a method inspired by the finite element method when applying mesh refinements to solve parametric problems. Secondly, we propose a general residual minimization scheme based on a generalized version of the Ritz method. Finally, we develop a memory-based strategy to overcome a usual numerical integration limitation when using neural networks to solve partial differential equations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Carlos Uriarte (9 papers)

Summary

We haven't generated a summary for this paper yet.