Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cross-Modal Learning of Housing Quality in Amsterdam (2403.08915v1)

Published 13 Mar 2024 in cs.CV and cs.AI

Abstract: In our research we test data and models for the recognition of housing quality in the city of Amsterdam from ground-level and aerial imagery. For ground-level images we compare Google StreetView (GSV) to Flickr images. Our results show that GSV predicts the most accurate building quality scores, approximately 30% better than using only aerial images. However, we find that through careful filtering and by using the right pre-trained model, Flickr image features combined with aerial image features are able to halve the performance gap to GSV features from 30% to 15%. Our results indicate that there are viable alternatives to GSV for liveability factor prediction, which is encouraging as GSV images are more difficult to acquire and not always available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. United Nations, Department of Economic and Social Affairs, Population Division, “World Urbanization Prospects: The 2018 Revision,” New York, Tech. Rep. ST/ESA/SER.A/420, 2019.
  2. G. W. Evans, “The built environment and mental health,” J Urban Health, vol. 80, no. 4, pp. 536–555, Dec. 2003.
  3. S. Thompson and J. Kent, “Healthy Built Environments Supporting Everyday Occupations: Current Thinking in Urban Planning,” Journal of Occupational Science, vol. 21, no. 1, pp. 25–41, Jan. 2014.
  4. S. Barber, D. A. Hickson, I. Kawachi, S. V. Subramanian, and F. Earls, “Neighborhood Disadvantage and Cumulative Biological Risk Among a Socioeconomically Diverse Sample of African American Adults: An Examination in the Jackson Heart Study,” J Racial Ethn Health Disparities, vol. 3, no. 3, pp. 444–456, 2016.
  5. A. Dubey, N. Naik, D. Parikh, R. Raskar, and C. A. Hidalgo, “Deep Learning the City: Quantifying Urban Perception at a Global Scale,” in ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds.   Cham: Springer, 2016, pp. 196–212.
  6. N. Naik, J. Philipoom, R. Raskar, and C. Hidalgo, “Streetscore – Predicting the Perceived Safety of One Million Streetscapes,” in CVPR 2014.   Columbus, OH, USA: IEEE, Jun. 2014, pp. 793–799. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6910072
  7. S. Scepanovic, S. Joglekar, S. Law, and D. Quercia, “Jane Jacobs in the Sky: Predicting Urban Vitality with Open Satellite Data,” ACM Human-Computer Interaction, vol. 5, pp. 1–25, Apr. 2021.
  8. A. Levering, D. Marcos, and D. Tuia, “Liveability from Above: Understanding Quality of Life with Overhead Imagery and Deep Neural Networks,” in Proceedings of IGARSS 2021.   Brussels: IEEE, Jul. 2021.
  9. PDOK, “NIEUW: hogere resolutie luchtfoto als open data bij PDOK,” Oct. 2017. [Online]. Available: https://www.pdok.nl/-/nieuw-hogere-resolutie-luchtfoto-als-open-data-bij-pdok
  10. S. Srivastava, J. E. Vargas-Muñoz, and D. Tuia, “Understanding urban landuse from the above and ground perspectives: a deep learning, multimodal solution,” Remote Sensing of Environment, vol. 228, pp. 129–143, Jul. 2019, arXiv: 1905.01752. [Online]. Available: http://arxiv.org/abs/1905.01752
  11. I. Havinga, P. W. Bogaart, L. Hein, and D. Tuia, “Defining and spatially modelling cultural ecosystem services using crowdsourced data,” Ecosystem Services, vol. 43, p. 101091, Jun. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212041620300334
  12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in CVPR 2016, Jun. 2016, pp. 770–778.
  13. S. Srivastava, J. E. Vargas Muñoz, S. Lobry, and D. Tuia, “Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data,” IJGIS, vol. 34, no. 6, pp. 1117–1136, Jun. 2020. [Online]. Available: https://doi.org/10.1080/13658816.2018.1542698
  14. M. G. Kendall, “A New Measure for Rank Correlation,” Biometrika, vol. 30, no. 1-2, pp. 81–93, Jun. 1938. [Online]. Available: https://doi.org/10.1093/biomet/30.1-2.81
  15. B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 Million Image Database for Scene Recognition,” IEEE TPAM, vol. 40, no. 6, pp. 1452–1464, Jun. 2018.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.