Emergent Mind

Abstract

Natural language processing models have experienced a significant upsurge in recent years, with numerous applications being built upon them. Many of these applications require fine-tuning generic base models on customized, proprietary datasets. This fine-tuning data is especially likely to contain personal or sensitive information about individuals, resulting in increased privacy risk. Membership inference attacks are the most commonly employed attack to assess the privacy leakage of a machine learning model. However, limited research is available on the factors that affect the vulnerability of language models to this kind of attack, or on the applicability of different defense strategies in the language domain. We provide the first systematic review of the vulnerability of fine-tuned LLMs to membership inference attacks, the various factors that come into play, and the effectiveness of different defense strategies. We find that some training methods provide significantly reduced privacy risk, with the combination of differential privacy and low-rank adaptors achieving the best privacy protection against these attacks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.