Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MorphoGear: An UAV with Multi-Limb Morphogenetic Gear for Rough-Terrain Locomotion (2403.08340v1)

Published 13 Mar 2024 in cs.RO

Abstract: Robots able to run, fly, and grasp have a high potential to solve a wide scope of tasks and navigate in complex environments. Several mechatronic designs of such robots with adaptive morphologies are emerging. However, the task of landing on an uneven surface, traversing rough terrain, and manipulating objects still presents high challenges. This paper introduces the design of a novel rotor UAV MorphoGear with morphogenetic gear and includes a description of the robot's mechanics, electronics, and control architecture, as well as walking behavior and an analysis of experimental results. MorphoGear is able to fly, walk on surfaces with several gaits, and grasp objects with four compatible robotic limbs. Robotic limbs with three degrees of freedom (DoFs) are used by this UAV as pedipulators when walking or flying and as manipulators when performing actions in the environment. We performed a locomotion analysis of the landing gear of the robot. Three types of robot gaits have been developed. The experimental results revealed low crosstrack error of the most accurate gait (mean of 1.9 cm and max of 5.5 cm) and the ability of the drone to move with a 210 mm step length. Another type of robot gait also showed low crosstrack error (mean of 2.3 cm and max of 6.9 cm). The proposed MorphoGear system can potentially achieve a high scope of tasks in environmental surveying, delivery, and high-altitude operations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. R. Zhang, Y. Wu, L. Zhang, C. Xu, and F. Gao, “Autonomous and adaptive navigation for terrestrial-aerial bimodal vehicles,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3008–3015, 2022.
  2. L. Daler, S. Mintchev, C. Stefanini, and D. Floreano, “A bioinspired multi-modal flying and walking robot,” Bioinspiration & Biomimetics, vol. 10, no. 1, p. 016005, jan 2015. [Online]. Available: https://dx.doi.org/10.1088/1748-3190/10/1/016005
  3. Y. Mulgaonkar, B. Araki, J.-s. Koh, L. Guerrero-Bonilla, D. M. Aukes, A. Makineni, M. T. Tolley, D. Rus, R. J. Wood, and V. Kumar, “The flying monkey: A mesoscale robot that can run, fly, and grasp,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 4672–4679.
  4. J. Sun and J. Zhao, “An adaptive walking robot with reconfigurable mechanisms using shape morphing joints,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 724–731, 2019.
  5. H. Kim, D. Lee, K. Jeong, and T. Seo, “Water and ground-running robotic platform by repeated motion of six spherical footpads,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 175–183, 2016.
  6. R. Baines, S. K. Patiballa, J. Booth, L. Ramirez, T. Sipple, A. Garcia, F. Fish, and R. Kramer-Bottiglio, “Multi-environment robotic transitions through adaptive morphogenesis,” Nature, vol. 610, no. 7931, pp. 283–289, 2022.
  7. L. Li, S. Wang, Y. Zhang, S. Song, C. Wang, S. Tan, W. Zhao, G. Wang, W. Sun, F. Yang, J. Liu, B. Chen, H. Xu, P. Nguyen, M. Kovac, and L. Wen, “Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces,” Science Robotics, vol. 7, no. 66, p. eabm6695, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abm6695
  8. G. Yashin, A. Egorov, Z. Darush, N. Zherdev, and D. Tsetserukou, “Locogear: Locomotion analysis of robotic landing gear for multicopters,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 1, no. 2, pp. 138–147, 2020.
  9. Y. S. Sarkisov, M. J. Kim, D. Bicego, D. Tsetserukou, C. Ott, A. Franchi, and K. Kondak, “Development of sam: cable-suspended aerial manipulator,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 5323–5329.
  10. A. X. Appius, E. Bauer, M. Blöchlinger, A. Kalra, R. Oberson, A. Raayatsanati, P. Strauch, S. Suresh, M. von Salis, and R. K. Katzschmann, “Raptor: Rapid aerial pickup and transport of objects by robots,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 349–355.
  11. K. C. V. Broers and S. F. Armanini, “Design and testing of a bioinspired lightweight perching mechanism for flapping-wing mavs using soft grippers,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7526–7533, 2022.
  12. M. Brunner, G. Rizzi, M. Studiger, R. Siegwart, and M. Tognon, “A planning-and-control framework for aerial manipulation of articulated objects,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 689–10 696, 2022.
  13. G. A. Yashin, D. Trinitatova, R. T. Agishev, R. Ibrahimov, and D. Tsetserukou, “Aerovr: Virtual reality-based teleoperation with tactile feedback for aerial manipulation,” in 2019 19th International Conference on Advanced Robotics (ICAR), 2019, pp. 767–772.
  14. J. I. Camacho-Arreguin, M. Wang, M. Russo, X. Dong, and D. Axinte, “Novel reconfigurable walking machine tool enables symmetric and nonsymmetric walking configurations,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5495–5506, 2022.
  15. P. Čížek, J. Kubík, and J. Faigl, “Online foot-strike detection using inertial measurements for multi-legged walking robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 7622–7627.
  16. J. Hooks and D. Hong, “Implementation of a versatile 3d zmp trajectory optimization algorithm on a multi-modal legged robotic platform,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3777–3782.
  17. A. Kalantari and M. Spenko, “Design and experimental validation of hytaq, a hybrid terrestrial and aerial quadrotor,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4445–4450.
  18. S. Latscha, M. Kofron, A. Stroffolino, L. Davis, G. Merritt, M. Piccoli, and M. Yim, “Design of a hybrid exploration robot for air and land deployment (h.e.r.a.l.d) for urban search and rescue applications,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1868–1873.
  19. M. Ceccarelli, D. Cafolla, M. Russo, and G. Carbone, “Heritagebot platform for service in cultural heritage frames,” International Journal of Advanced Robotic Systems, vol. 15, no. 4, p. 1729881418790692, 2018. [Online]. Available: https://doi.org/10.1177/1729881418790692
  20. M. Pitonyak and F. Sahin, “Locomotion and transitional procedures for a hexapod-quadcopter robot,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 1447–1452.
  21. Y. S. Sarkisov, G. A. Yashin, E. V. Tsykunov, and D. Tsetserukou, “Dronegear: A novel robotic landing gear with embedded optical torque sensors for safe multicopter landing on an uneven surface,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1912–1917, 2018.
  22. K. Kim, P. Spieler, E.-S. Lupu, A. Ramezani, and S.-J. Chung, “A bipedal walking robot that can fly, slackline, and skateboard,” Science Robotics, vol. 6, no. 59, p. eabf8136, 2021. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abf8136
Citations (8)

Summary

We haven't generated a summary for this paper yet.