Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TaskCLIP: Extend Large Vision-Language Model for Task Oriented Object Detection (2403.08108v2)

Published 12 Mar 2024 in cs.CV

Abstract: Task-oriented object detection aims to find objects suitable for accomplishing specific tasks. As a challenging task, it requires simultaneous visual data processing and reasoning under ambiguous semantics. Recent solutions are mainly all-in-one models. However, the object detection backbones are pre-trained without text supervision. Thus, to incorporate task requirements, their intricate models undergo extensive learning on a highly imbalanced and scarce dataset, resulting in capped performance, laborious training, and poor generalizability. In contrast, we propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection. Particularly for the latter, we resort to the recently successful large Vision-LLMs (VLMs) as our backbone, which provides rich semantic knowledge and a uniform embedding space for images and texts. Nevertheless, the naive application of VLMs leads to sub-optimal quality, due to the misalignment between embeddings of object images and their visual attributes, which are mainly adjective phrases. To this end, we design a transformer-based aligner after the pre-trained VLMs to re-calibrate both embeddings. Finally, we employ a trainable score function to post-process the VLM matching results for object selection. Experimental results demonstrate that our TaskCLIP outperforms the state-of-the-art DETR-based model TOIST by 3.5% and only requires a single NVIDIA RTX 4090 for both training and inference.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com