Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Highway Preferential Attachment Models for Geographic Routing (2403.08105v2)

Published 12 Mar 2024 in cs.DS

Abstract: In the 1960s, the world-renowned social psychologist Stanley Milgram conducted experiments that showed that not only do there exist ``short chains'' of acquaintances between any two arbitrary people, but that these arbitrary strangers are able to find these short chains. This phenomenon, known as the \emph{small-world phenomenon}, is explained in part by any model that has a low diameter, such as the Barab\'asi and Albert's \emph{preferential attachment} model, but these models do not display the same efficient routing that Milgram's experiments showed. In the year 2000, Kleinberg proposed a model with an efficient $\mathcal{O}(\log2{n})$ greedy routing algorithm. In 2004, Martel and Nguyen showed that Kleinberg's analysis was tight, while also showing that Kleinberg's model had an expected diameter of only $\Theta(\log{n})$ -- a much smaller value than the greedy routing algorithm's path lengths. In 2022, Goodrich and Ozel proposed the \emph{neighborhood preferential attachment} model (NPA), combining elements from Barab\'asi and Albert's model with Kleinberg's model, and experimentally showed that the resulting model outperformed Kleinberg's greedy routing performance on U.S. road networks. While they displayed impressive empirical results, they did not provide any theoretical analysis of their model. In this paper, we first provide a theoretical analysis of a generalization of Kleinberg's original model and show that it can achieve expected $\mathcal{O}(\log{n})$ routing, a much better result than Kleinberg's model. We then propose a new model, \emph{windowed NPA}, that is similar to the neighborhood preferential attachment model but has provable theoretical guarantees w.h.p. We show that this model is able to achieve $\mathcal{O}(\log{1 + \epsilon}{n})$ greedy routing for any $\epsilon > 0$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: