Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

RoLD: Robot Latent Diffusion for Multi-task Policy Modeling (2403.07312v3)

Published 12 Mar 2024 in cs.RO

Abstract: Modeling generalized robot control policies poses ongoing challenges for language-guided robot manipulation tasks. Existing methods often struggle to efficiently utilize cross-dataset resources or rely on resource-intensive vision-LLMs, thus limiting their multi-task performance and practical applications. In this study, we propose a novel approach that decouples robot action trajectory encoding and control policy generation by leveraging latent action trajectory spaces, enhancing the generalization ability of policy generation on multi-task manipulation tasks. First, we pre-train a task-agnostic auto-encoder to project an action trajectory of several frames accompanied with observations into a latent action trajectory space on large-scale datasets collected with multiple embodiments in various environments. Then we propose learning a diffusion model based on the latent action trajectory space to generate actions of next steps. Through experiments on two widely used benchmarks, results demonstrate that our proposed method outperforms baselines by 7%-29% in terms of average success rate across eight tasks. Our method can consistently benefit from pre-training while baselines cannot. Our method is more than two times faster than our baseline.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com