Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Dynamic U-Net: Adaptively Calibrate Features for Abdominal Multi-organ Segmentation (2403.07303v1)

Published 12 Mar 2024 in eess.IV and cs.CV

Abstract: U-Net has been widely used for segmenting abdominal organs, achieving promising performance. However, when it is used for multi-organ segmentation, first, it may be limited in exploiting global long-range contextual information due to the implementation of standard convolutions. Second, the use of spatial-wise downsampling (e.g., max pooling or strided convolutions) in the encoding path may lead to the loss of deformable or discriminative details. Third, features upsampled from the higher level are concatenated with those that persevered via skip connections. However, repeated downsampling and upsampling operations lead to misalignments between them and their concatenation degrades segmentation performance. To address these limitations, we propose Dynamically Calibrated Convolution (DCC), Dynamically Calibrated Downsampling (DCD), and Dynamically Calibrated Upsampling (DCU) modules, respectively. The DCC module can utilize global inter-dependencies between spatial and channel features to calibrate these features adaptively. The DCD module enables networks to adaptively preserve deformable or discriminative features during downsampling. The DCU module can dynamically align and calibrate upsampled features to eliminate misalignments before concatenations. We integrated the proposed modules into a standard U-Net, resulting in a new architecture, termed Dynamic U-Net. This architectural design enables U-Net to dynamically adjust features for different organs. We evaluated Dynamic U-Net in two abdominal multi-organ segmentation benchmarks. Dynamic U-Net achieved statistically improved segmentation accuracy compared with standard U-Net. Our code is available at https://github.com/sotiraslab/DynamicUNet.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.