Emergent Mind

Abstract

We study the generalization capability of nearly-interpolating linear regressors: $\boldsymbol{\beta}$'s whose training error $\tau$ is positive but small, i.e., below the noise floor. Under a random matrix theoretic assumption on the data distribution and an eigendecay assumption on the data covariance matrix $\boldsymbol{\Sigma}$, we demonstrate that any near-interpolator exhibits rapid norm growth: for $\tau$ fixed, $\boldsymbol{\beta}$ has squared $\ell2$-norm $\mathbb{E}[|{\boldsymbol{\beta}}|{2}{2}] = \Omega(n{\alpha})$ where $n$ is the number of samples and $\alpha >1$ is the exponent of the eigendecay, i.e., $\lambda_i(\boldsymbol{\Sigma}) \sim i{-\alpha}$. This implies that existing data-independent norm-based bounds are necessarily loose. On the other hand, in the same regime we precisely characterize the asymptotic trade-off between interpolation and generalization. Our characterization reveals that larger norm scaling exponents $\alpha$ correspond to worse trade-offs between interpolation and generalization. We verify empirically that a similar phenomenon holds for nearly-interpolating shallow neural networks.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.