Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction (2403.07263v2)

Published 12 Mar 2024 in cs.CV, cs.LG, and stat.ML

Abstract: Quantifying a model's predictive uncertainty is essential for safety-critical applications such as autonomous driving. We consider quantifying such uncertainty for multi-object detection. In particular, we leverage conformal prediction to obtain uncertainty intervals with guaranteed coverage for object bounding boxes. One challenge in doing so is that bounding box predictions are conditioned on the object's class label. Thus, we develop a novel two-step conformal approach that propagates uncertainty in predicted class labels into the uncertainty intervals of bounding boxes. This broadens the validity of our conformal coverage guarantees to include incorrectly classified objects, thus offering more actionable safety assurances. Moreover, we investigate novel ensemble and quantile regression formulations to ensure the bounding box intervals are adaptive to object size, leading to a more balanced coverage. Validating our two-step approach on real-world datasets for 2D bounding box localization, we find that desired coverage levels are satisfied with practically tight predictive uncertainty intervals.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 3 likes about this paper.